matplot如何画混淆矩阵图
时间: 2024-09-24 10:05:10 浏览: 48
Matplotlib是一个广泛使用的Python数据可视化库,用于创建各种图表,包括混淆矩阵图。混淆矩阵通常在评估分类模型性能时使用,它展示了真实标签和预测标签之间的对应情况。在Matplotlib中,我们可以结合`matplotlib.pyplot`和`sklearn.metrics.confusion_matrix`函数来绘制。
首先,你需要安装`scikit-learn`库,因为它包含了计算混淆矩阵的功能。然后,你可以按照以下步骤绘制:
```python
import matplotlib.pyplot as plt
from sklearn import metrics
# 假设y_true是实际标签,y_pred是预测标签
conf_matrix = metrics.confusion_matrix(y_true, y_pred)
fig, ax = plt.subplots()
im = ax.imshow(conf_matrix, cmap='Blues', interpolation='nearest') # 使用蓝调色系
# 显示轴标签
ax.set_xlabel('Predicted labels')
ax.set_ylabel('True labels')
# 添加行和列的标签
ax.set_xticks(range(len(conf_matrix)), labels=classes)
ax.set_yticks(range(len(conf_matrix)), labels=classes)
# 设置数值颜色
for i in range(conf_matrix.shape[0]):
for j in range(conf_matrix.shape[1]):
ax.text(j, i, conf_matrix[i, j], ha="center", va="center", color="white" if conf_matrix[i, j] > 0 else "black")
plt.title('Confusion Matrix')
plt.colorbar(im) # 添加颜色条
plt.show()
阅读全文
相关推荐














