python opencv局部亮度均衡化处理
时间: 2024-07-19 14:01:26 浏览: 213
python_opencv_图像亮度提升_
5星 · 资源好评率100%
在Python的OpenCV库中,局部亮度均衡化是一种图像增强技术,用于改善图像对比度,特别适用于那些光照不均匀的场景。它通过对每个像素周围一小区域内的灰度值进行统计分析,然后计算出该像素的新灰度值,使其相对于其邻域内的像素更均匀。
`cv2.createCLAHE()`函数是OpenCV提供的用于局部对比度均值适应(Local Contrast Adaptive Histogram Equalization, CLAHE)的核心工具。下面是一个简单的例子:
```python
import cv2
import numpy as np
# 读取图像
image = cv2.imread('input_image.jpg', cv2.IMREAD_GRAYSCALE)
# 创建CLAHE对象,设置大小和邻域
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
# 对图像应用CLAHE
equalized = clahe.apply(image)
# 显示原图和处理后的图像
cv2.imshow("Original Image", image)
cv2.imshow("Equalized Image", equalized)
# 等待用户按键并关闭窗口
cv2.waitKey(0)
cv2.destroyAllWindows()
```
在这个例子中,`clipLimit`参数控制了亮度调整的程度,`tileGridSize`指定了统计区域(也称为“tiles”)的大小。
阅读全文