fid = fopen('resultjieshu1.txt', 'w'); % 打开文件 for i = 1:10 node_id = idx(top10_idx(i)); % 使用排序后的索引来获取节点编号 node_bc = BC1(node_id); node_x = node_pos(top10_idx(i), 1); % 使用未排序的索引来获取节点x坐标 node_y = node_pos(top10_idx(i), 2); % 使用未排序的索引来获取节点y坐标 node_z = node_pos(top10_idx(i), 3); % 使用未排序的索引来获取节点z坐标 fprintf(fid, '节点 %d,坐标为 (%f,%f,%f)\n', node_id, node_x, node_y, node_z); end open 'resultjieshu1.txt' % 找到最大的10个节点 [M,I] = sort(flow_betweenness,'descend'); I = I(1:10); M = M(1:10); % 输出结果 for i = 1:length(I) fprintf('第%d个最重要的节点是 %d 具有流动中介中心性 %f\n',i,I(i),M(i)); node_coordinates = importdata('node_coordinates.txt'); fprintf('该节点的坐标:\n'); disp(node_coordinates(I(i),:)); end 如何从这两个输出的结果中找到共同出现的节点坐标?

时间: 2024-02-04 19:02:13 浏览: 19
可以将第一个输出的结果保存到一个变量中,然后在第二个输出结果时,判断节点编号是否在前面的结果中出现过,如果出现过,则输出该节点的坐标。可以参考以下代码: ``` fid = fopen('resultjieshu1.txt', 'w'); % 打开文件 for i = 1:10 node_id = idx(top10_idx(i)); % 使用排序后的索引来获取节点编号 node_bc = BC1(node_id); node_x = node_pos(top10_idx(i), 1); % 使用未排序的索引来获取节点x坐标 node_y = node_pos(top10_idx(i), 2); % 使用未排序的索引来获取节点y坐标 node_z = node_pos(top10_idx(i), 3); % 使用未排序的索引来获取节点z坐标 fprintf(fid, '节点 %d,坐标为 (%f,%f,%f)\n', node_id, node_x, node_y, node_z); end fclose(fid); % 找到最大的10个节点 [M,I] = sort(flow_betweenness,'descend'); I = I(1:10); M = M(1:10); % 输出结果 node_coordinates = importdata('node_coordinates.txt'); for i = 1:length(I) node_id = I(i); if any(idx(top10_idx) == node_id) % 判断节点编号是否在前面的结果中出现过 fprintf('第%d个最重要的节点是 %d 具有流动中介中心性 %f\n',i,node_id,M(i)); fprintf('该节点的坐标:\n'); disp(node_coordinates(node_id,:)); end end ``` 其中 `any(idx(top10_idx) == node_id)` 表示判断节点编号 `node_id` 是否在前面的结果中出现过。如果出现过,返回 `true`,否则返回 `false`。

相关推荐

为什么两个结果一模一样,该怎么改:BC1 = zeros(1,N); % 第一个网络的介数中心性 BC2 = zeros(1,N); % 第二个网络的介数中心性 for i=1:N % 计算第一个网络中的介数中心性 [dist,~,pred] = graphshortestpath(sparse(a1),i,'Directed',false); for j=1:N if i~=j && dist(j)<Inf path = j; k = j; while k~=i k = pred(k); path = [k,path]; %#ok<AGROW> end for l=1:length(path)-1 BC1(path(l)) = BC1(path(l)) + 1/dist(j); end end end end fid = fopen('node_coordinates.txt'); C = textscan(fid, 'Node %d: (%f,%f,%f)'); fclose(fid); nodes = [C{2}, C{3}, C{4}]; node_ids = C{1}; node_pos = nodes(:,1:2); [BC1_sorted, BC1_idx] = sort(BC1, 'descend'); % 将介数中心性从高到低排序并记录排序后的索引 top5_idx = BC1_idx(1:5); % 取前5个节点的索引 for i = 1:5 node_id = idx(top5_idx(i)); % 使用排序后的索引来获取节点编号 node_bc = BC1(node_id); node_x = node_pos(top5_idx(i), 1); % 使用未排序的索引来获取节点坐标 node_y = node_pos(top5_idx(i), 2); fprintf('节点 %d,介数中心性为 %f,坐标为 (%f,%f)\n', node_id, node_bc, node_x, node_y); end for i=1:N % 计算第二个网络中的介数中心性 [dist,~,pred] = graphshortestpath(sparse(a2),i,'Directed',false); for j=1:N if i~=j && dist(j)<Inf path = j; k = j; while k~=i k = pred(k); path = [k,path]; %#ok<AGROW> end for l=1:length(path)-1 BC2(path(l)) = BC2(path(l)) + 1/dist(j); end end end end fid = fopen('node_coordinates2.txt'); C = textscan(fid, 'Node %d: (%f,%f,%f)'); fclose(fid); nodes = [C{2}, C{3}, C{4}]; node_ids = C{1}; node_pos = nodes(:,1:2); [BC2_sorted, BC2_idx] = sort(BC2, 'descend'); % 将介数中心性从高到低排序并记录排序后的索引 top5_idx = BC2_idx(1:5); % 取前5个节点的索引 for i = 1:5 node_id = idx(top5_idx(i)); % 使用排序后的索引来获取节点编号 node_bc = BC2(node_id); node_x = node_pos(top5_idx(i), 1); % 使用未排序的索引来获取节点坐标 node_y = node_pos(top5_idx(i), 2); fprintf('节点 %d,介数中心性为 %f,坐标为 (%f,%f)\n', node_id, node_bc, node_x, node_y); end

最新推荐

recommend-type

新建文本文档.txt

新建文本文档
recommend-type

开源Git gui工具Fork

开源Git gui工具Fork,CSDN能找到教程,但是资料不多,推荐用Tortoise
recommend-type

yolov5在华为昇腾atlas上加速推理

该资源为yolov5在华为昇腾atlas上使用Ascend310芯片加速推理,属于c++后端开发,适合C++开发者在华为昇腾盒子上移植深度学习算法的博主们。 资源是demo形式,包含完整的一套代码,还有转好的离线模型文件和跑出的测试结果图片。
recommend-type

C++ 实现贪吃蛇小游戏

C++贪吃蛇小游戏简介 内容概要 C++贪吃蛇小游戏是一款经典的2D游戏,它利用C++编程语言结合基本的图形库(如NCurses库或SDL库)实现。游戏的核心玩法包括控制贪吃蛇在封闭的场地内移动,通过吃掉随机出现的食物来增长身体长度,同时避免碰到场地边界或自己的身体,否则游戏结束。游戏界面简洁直观,通过键盘控制贪吃蛇的方向,提供流畅的游戏体验。 适用人群 C++贪吃蛇小游戏适用于广泛的人群,特别是: C++编程学习者:对于正在学习C++编程的学生或爱好者,这款小游戏是一个很好的实践项目。通过实现游戏,可以加深对C++语法、数据结构、面向对象编程等知识点的理解和应用。 使用场景及目标 C++贪吃蛇小游戏可以在以下场景中使用,并达到以下目标: 编程教学实践:在编程教学课堂上,教师可以使用该游戏作为案例,引导学生完成项目的开发。通过实践,学生可以更好地掌握C++编程技能,并将理论知识应用于实际项目中。 个人项目实践:对于个人学习者,实现贪吃蛇小游戏可以作为自我挑战和实践的机会。通过独立完成项目,可以提升自己的编程能力和解决问题的能力。
recommend-type

ec616DataSheet

移芯NBIOT 芯片,NB芯片,水表电表芯片,烟感 地磁芯片 超弱信号环境业务能力。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

HSV转为RGB的计算公式

HSV (Hue, Saturation, Value) 和 RGB (Red, Green, Blue) 是两种表示颜色的方式。下面是将 HSV 转换为 RGB 的计算公式: 1. 将 HSV 中的 S 和 V 值除以 100,得到范围在 0~1 之间的值。 2. 计算色相 H 在 RGB 中的值。如果 H 的范围在 0~60 或者 300~360 之间,则 R = V,G = (H/60)×V,B = 0。如果 H 的范围在 60~120 之间,则 R = ((120-H)/60)×V,G = V,B = 0。如果 H 的范围在 120~180 之间,则 R = 0,G = V,B =
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。