写一个MATLAB最小二乘曲线拟合的代码
时间: 2023-04-06 18:02:43 浏览: 147
好的,我可以回答这个问题。以下是MATLAB最小二乘曲线拟合的代码:
x = [1, 2, 3, 4, 5];
y = [1.2, 1.9, 3.2, 4.1, 5.1];
n = length(x);
A = [ones(n, 1), x'];
b = y';
coefficients = (A' * A) \ (A' * b);
a0 = coefficients(1);
a1 = coefficients(2);
f = @(x) a0 + a1 * x;
plot(x, y, 'o', x, f(x), '-');
legend('Data', 'Linear Fit');
xlabel('x');
ylabel('y');
title('Linear Regression');
希望这个代码对你有所帮助。
相关问题
写一个matlab最小二乘曲线拟合的代码
下面是一个MATLAB的最小二乘曲线拟合代码,可以用于多项式拟合:
```matlab
% 数据点
x = [0 1 2 3 4 5 6 7 8 9];
y = [0.1 0.9 2.2 2.8 3.5 5.0 6.1 7.9 8.8 10.1];
% 多项式次数
n = 3;
% 构造矩阵A和向量b
A = zeros(n+1,n+1);
b = zeros(n+1,1);
for i = 0:n
for j = 0:n
A(i+1,j+1) = sum(x.^(i+j));
end
b(i+1) = sum(x.^i.*y);
end
% 求解系数向量c
c = A\b;
% 画出拟合曲线
xx = linspace(0,max(x),100);
yy = zeros(size(xx));
for i = 0:n
yy = yy + c(i+1)*xx.^i;
end
plot(x,y,'o',xx,yy)
```
这段代码会产生一个多项式曲线,以最小二乘法拟合给定的数据点。其中,`x`和`y`是数据点的横、纵坐标,`n`是多项式的次数,`A`是系数矩阵,`b`是向量,`c`是系数向量,`xx`是用于画图的横坐标,`yy`是用于画图的纵坐标。
matlab最小二乘曲线拟合原理描述
最小二乘曲线拟合是一种常用的数据拟合方法,其原理是通过最小化实际数据点与拟合曲线之间的误差平方和来确定最佳拟合曲线的参数。具体来说,该方法通过求解一个线性方程组来确定拟合曲线的参数,使得实际数据点到拟合曲线的距离最小化。这种方法可以用于拟合各种类型的曲线,包括直线、多项式、指数函数等。
阅读全文