pynq图像识别简单代码
时间: 2023-11-01 07:08:41 浏览: 188
以下是一个简单的PYNQ图像识别代码示例:
```
from pynq import Overlay
import numpy as np
import cv2
# Load the overlay
overlay = Overlay('path/to/overlay.bit')
# Load the input image
img = cv2.imread('path/to/image.jpg')
# Resize the image
img_resized = cv2.resize(img, (224, 224))
# Convert the image to grayscale
img_gray = cv2.cvtColor(img_resized, cv2.COLOR_BGR2GRAY)
# Normalize the image
img_norm = img_gray / 255.0
# Reshape the image
img_reshaped = np.reshape(img_norm, (1, 1, 224, 224))
# Convert the image to float32
img_float32 = img_reshaped.astype(np.float32)
# Get the input and output buffers
input_buffer = overlay.axi_dma_0.sendchannel
output_buffer = overlay.axi_dma_0.recvchannel
# Send the image to the accelerator
input_buffer.transfer(img_float32)
# Get the result from the accelerator
result = np.zeros((1,), dtype=np.uint32)
output_buffer.transfer(result)
# Print the result
print(result)
```
这个示例代码加载了一个PYNQ覆盖层并使用了OpenCV库来处理图像。它将输入图像调整大小、转换为灰度图像、归一化、重塑和转换为float32。然后它将输入数据传输到加速器,从加速器读取输出数据,并打印结果。这个示例代码可以作为PYNQ图像识别的基础,可以根据需要进行修改和优化。
阅读全文