Function PCA, rgb_data dims = size(rgb_data, /DIMENSIONS) ;图像数据大小,行,列 b=dblarr(6,6) ; help,b m=dblarr(6) for i=0,5 do begin m[i]=total((rgb_data[*,*,i]))/(dims[0]*dims[1]) endfor PRINT,M for i=0,5 do begin for j=0,5 do begin img_var=total((rgb_data[*,*,i]-m[i])*(rgb_data[*,*,j]-m[j]))/(dims[0]*dims[1]) b[i,j]=img_var endfor endfor ;Compute the eigenvalues and eigenvectors eigenvalues = EIGENQL(b, EIGENVECTORS = evecs, $ RESIDUAL = residual) ;对特征值进行排序 r=sort(eigenvalues) r1=reverse(r) A=dblarr(6,6) A=evecs[[r1],*] X = intarr(1,6) new_data=intarr(dims[0],dims[1],6) for i=0,dims[0]-1 do begin for j=0,dims[1]-1 do begin x[0,*]=rgb_data[i,j,*] r=A##X new_data[i,j,*]=r endfor endfor help,new_data return,new_data end ; ;求特征值 Function A, tm_data_b1,tm_data_b2,tm_data_b3,tm_data_b4,tm_data_b5,tm_data_b6 dims = size(tm_data_b1, /DIMENSIONS) ;图像数据大小,行,列 rgb_data = intarr(dims[0],dims[1],6) ;定一个六个波段的矩阵 rgb_data[*,*,0] = tm_data_b1 ;将tm_data每个波段的数捄1�7 rgb_data[*,*,1] = tm_data_b2 ;翻转图像,因为图像数据读取进来是颠�1�7�的〄1�7 rgb_data[*,*,2] = tm_data_b3 rgb_data[*,*,3] = tm_data_b4 rgb_data[*,*,4] = tm_data_b5 rgb_data[*,*,5] = tm_data_b6 help,rgb_data b=dblarr(6,6) ; help,b m=dblarr(6) for i=0,5 do begin m[i]=total((rgb_data[*,*,i]))/(dims[0]*dims[1]) endfor PRINT,M for i=0,5 do begin for j=0,5 do begin img_var=total((rgb_data[*,*,i]-m[i])*(rgb_data[*,*,j]-m[j]))/(dims[0]*dims[1]) b[i,j]=img_var endfor endfor ;Compute the eigenvalues and eigenvectors eigenvalues = EIGENQL(b, EIGENVECTORS = evecs, $ RESIDUAL = residual) ;对特征值进行排序 r=sort(eigenvalues) r1=reverse(r) A=dblarr(6,6) A=evecs[[r1],*] return,invert(A) end这段代码是什么

时间: 2024-04-28 22:18:48 浏览: 24
这段代码实现了PCA(主成分分析)变换,用于对多光谱遥感图像进行降维处理。该函数接收一个包含多个波段数据的RGB矩阵(rgb_data),将其转换成包含多个特征的矩阵,并对其进行PCA变换。具体来说,该函数实现了以下步骤: 1. 计算每个波段数据的均值(m); 2. 计算协方差矩阵(b); 3. 计算协方差矩阵的特征值和特征向量; 4. 对特征值进行排序,并将特征向量按照特征值的大小进行排序; 5. 将排序后的特征向量组成新的变换矩阵(A); 6. 对原始数据进行PCA变换,得到降维后的新数据(new_data)。 除了PCA变换函数之外,还包括了一个求特征值的函数(A),该函数返回的是特征向量矩阵的逆矩阵。
相关问题

Function rgb2his, rgb_data dims = size(rgb_data, /DIMENSIONS) rgb_data = rgb_data/255.0 HIS_data = fltarr(dims[0],dims[1],3) For i=0, dims[0]-1 do begin For j=0, dims[1]-1 do begin maxi=max(rgb_data[i,j,*]) mini=min(rgb_data[i,j,*]) Inten=(maxi+mini)/2.0; If (maxi eq mini) then begin Sat=0 Hue=0 Endif else begin If Inten LE 0.5 then begin Sat=(maxi-mini)*1.0/(maxi+mini); Endif else begin Sat=(maxi-mini)/(2.0-maxi-mini); Endelse r=(maxi-rgb_data[i,j,0])*1.0/(maxi-mini) g=(maxi-rgb_data[i,j,1])*1.0/(maxi-mini) b=(maxi-rgb_data[i,j,2])*1.0/(maxi-mini) if (maxi eq rgb_data[i,j,0]) then Hue=60.0*(2+b-g) if (maxi eq rgb_data[i,j,1]) then Hue=60.0*(4+r-b); if (maxi eq rgb_data[i,j,2]) then Hue=60.0*(6+g-r); Endelse HIS_data[i,j,0]=Inten HIS_data[i,j,1]=Sat HIS_data[i,j,2]=Hue Endfor Endfor return,HIS_data rgb_data = !NULL ;end rgb2his pro End将这段代码改写成PCA变换

很抱歉,该段代码与PCA变换无关,因此无法直接改写成PCA变换。PCA是一种数据降维技术,而该段代码是将RGB颜色空间转换为HIS颜色空间的过程。如果您需要将数据进行PCA变换,需要将数据先转换为矩阵形式,然后进行协方差矩阵计算、特征值分解等操作。建议您参考相关PCA的教程和示例代码,以便更好地理解和实现PCA变换。

pca = PCA(n_components=0.9) # 保持90%的信息 new_train_pca = pca.fit_transform(train_data_scaler.iloc[:,0:-1]) new_test_pca = pca.fit_transform(test_data_scaler) pca = PCA(n_components=16) new_train_pca_16 = pca.fit_transform(train_data_scaler.iloc[:,0:-1]) new_train_pca_16 = pd.DataFrame(new_train_pca_16) new_test_pca_16 = pca.fit_transform(test_data_scaler) new_test_pca_16 = pd.DataFrame(new_test_pca_16) new_train_pca_16['target']=train_data_scaler['target']

这段代码是一个使用PCA进行数据降维的过程。首先,通过PCA(n_components=0.9)来定义一个PCA对象,将其n_components参数设置为0.9,表示要将数据降到原来的90%信息量。然后,分别对训练集和测试集进行PCA降维,降维后的结果分别保存在new_train_pca和new_test_pca中。接着,再次定义一个PCA对象,将其n_components参数设置为16,表示要将数据降到原来的16个特征。然后,分别对训练集和测试集进行PCA降维,降维后的结果分别保存在new_train_pca_16和new_test_pca_16中,并将训练集的目标变量(假设为'target')添加到new_train_pca_16中。最终,new_train_pca_16和new_test_pca_16可以作为降维后的新数据集用于模型训练和测试。

相关推荐

index0 = numerical_corr.sort_values(ascending=False).index 36 print(train_data_scaler[index0].corr('spearman')) 37 38 new_numerical=['V0', 'V2', 'V3', 'V4', 'V5', 'V6', 'V10','V11', 39 'V13', 'V15', 'V16', 'V18', 'V19', 'V20', 'V22','V24','V30', 'V31', 'V37'] 40 X=np.matrix(train_data_scaler[new_numerical]) 41 VIF_list=[variance_inflation_factor(X, i) for i in range(X.shape[1])] 42 VIF_list 43 44 45 pca = PCA(n_components=0.9) 46 new_train_pca_90 = pca.fit_transform(train_data_scaler.iloc[:,0:-1]) 47 new_test_pca_90 = pca.transform(test_data_scaler) 48 new_train_pca_90 = pd.DataFrame(new_train_pca_90) 49 new_test_pca_90 = pd.DataFrame(new_test_pca_90) 50 new_train_pca_90['target'] = train_data_scaler['target'] 51 new_train_pca_90.describe() 52 53 pca = PCA(n_components=0.95) 54 new_train_pca_16 = pca.fit_transform(train_data_scaler.iloc[:,0:-1]) 55 new_test_pca_16 = pca.transform(test_data_scaler) 56 new_train_pca_16 = pd.DataFrame(new_train_pca_16) 57 new_test_pca_16 = pd.DataFrame(new_test_pca_16) 58 new_train_pca_16['target'] = train_data_scaler['target'] 59 new_train_pca_16.describe() 60 61 from sklearn.ensemble import GradientBoostingRegressor 62 63 from sklearn.model_selection import learning_curve 64 from sklearn.model_selection import ShuffleSplit 65 66 new_train_pca_16 = new_train_pca_16.fillna(0) 67 train = new_train_pca_16[new_test_pca_16.columns] 68 target = new_train_pca_16['target'] 69 70 train_data,test_data,train_target,test_target=train_test_split(train,target,test_size=0.2,random_state=0) 71 72 clf = LinearRegression() 73 clf.fit(train_data, train_target) 74 score = mean_squared_error(test_target, clf.predict(test_data)) 75 print("LinearRegression: ", score) 76 77 train_score = [] 78 test_score = []解释每一句代码的意思

最新推荐

recommend-type

4位RGB LED彩灯控制器PCA9633的应用

PCA9633是一款通过I2C总线控制的4路LED控制芯片,每一路LED输出的状态可以设置为没有PWM(Pulse Width Modulation)控制的关或开,或者由其独立的PWM控制器的值和组PWM控制器的值确定。LED驱动输出的信号频率为97 ...
recommend-type

基于Web开发的聊天系统(模拟QQ的基本功能)源码+项目说明.zip

基于Web开发的聊天系统(模拟QQ的基本功能)源码+项目说明.zip 本项目是一个仿QQ基本功能的前后端分离项目。前端采用了vue.js技术栈,后端采用springboot+netty混合开发。实现了好友申请、好友分组、好友聊天、群管理、群公告、用户群聊等功能。 后端技术栈 1. Spring Boot 2. netty nio 3. WebSocket 4. MyBatis 5. Spring Data JPA 6. Redis 7. MySQL 8. Spring Session 9. Alibaba Druid 10. Gradle #### 前端技术栈 1. Vue 3. axios 4. vue-router 5. Vuex 6. WebSocket 7. vue-cli4 8. JavaScript ES6 9. npm 【说明】 【1】项目代码完整且功能都验证ok,确保稳定可靠运行后才上传。欢迎下载使用!在使用过程中,如有问题或建议,请及时私信沟通,帮助解答。 【2】项目主要针对各个计算机相关专业,包括计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网等领
recommend-type

数据结构课程设计:模块化比较多种排序算法

本篇文档是关于数据结构课程设计中的一个项目,名为“排序算法比较”。学生针对专业班级的课程作业,选择对不同排序算法进行比较和实现。以下是主要内容的详细解析: 1. **设计题目**:该课程设计的核心任务是研究和实现几种常见的排序算法,如直接插入排序和冒泡排序,并通过模块化编程的方法来组织代码,提高代码的可读性和复用性。 2. **运行环境**:学生在Windows操作系统下,利用Microsoft Visual C++ 6.0开发环境进行编程。这表明他们将利用C语言进行算法设计,并且这个环境支持高效的性能测试和调试。 3. **算法设计思想**:采用模块化编程策略,将排序算法拆分为独立的子程序,比如`direct`和`bubble_sort`,分别处理直接插入排序和冒泡排序。每个子程序根据特定的数据结构和算法逻辑进行实现。整体上,算法设计强调的是功能的分块和预想功能的顺序组合。 4. **流程图**:文档包含流程图,可能展示了程序设计的步骤、数据流以及各部分之间的交互,有助于理解算法执行的逻辑路径。 5. **算法设计分析**:模块化设计使得程序结构清晰,每个子程序仅在被调用时运行,节省了系统资源,提高了效率。此外,这种设计方法增强了程序的扩展性,方便后续的修改和维护。 6. **源代码示例**:提供了两个排序函数的代码片段,一个是`direct`函数实现直接插入排序,另一个是`bubble_sort`函数实现冒泡排序。这些函数的实现展示了如何根据算法原理操作数组元素,如交换元素位置或寻找合适的位置插入。 总结来说,这个课程设计要求学生实际应用数据结构知识,掌握并实现两种基础排序算法,同时通过模块化编程的方式展示算法的实现过程,提升他们的编程技巧和算法理解能力。通过这种方式,学生可以深入理解排序算法的工作原理,同时学会如何优化程序结构,提高程序的性能和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32单片机小车智能巡逻车设计与实现:打造智能巡逻车,开启小车新时代

![stm32单片机小车](https://img-blog.csdnimg.cn/direct/c16e9788716a4704af8ec37f1276c4dc.png) # 1. STM32单片机简介及基础** STM32单片机是意法半导体公司推出的基于ARM Cortex-M内核的高性能微控制器系列。它具有低功耗、高性能、丰富的外设资源等特点,广泛应用于工业控制、物联网、汽车电子等领域。 STM32单片机的基础架构包括CPU内核、存储器、外设接口和时钟系统。其中,CPU内核负责执行指令,存储器用于存储程序和数据,外设接口提供与外部设备的连接,时钟系统为单片机提供稳定的时钟信号。 S
recommend-type

devc++如何监视

Dev-C++ 是一个基于 Mingw-w64 的免费 C++ 编程环境,主要用于 Windows 平台。如果你想监视程序的运行情况,比如查看内存使用、CPU 使用率、日志输出等,Dev-C++ 本身并不直接提供监视工具,但它可以在编写代码时结合第三方工具来实现。 1. **Task Manager**:Windows 自带的任务管理器可以用来实时监控进程资源使用,包括 CPU 占用、内存使用等。只需打开任务管理器(Ctrl+Shift+Esc 或右键点击任务栏),然后找到你的程序即可。 2. **Visual Studio** 或 **Code::Blocks**:如果你习惯使用更专业的
recommend-type

哈夫曼树实现文件压缩解压程序分析

"该文档是关于数据结构课程设计的一个项目分析,主要关注使用哈夫曼树实现文件的压缩和解压缩。项目旨在开发一个实用的压缩程序系统,包含两个可执行文件,分别适用于DOS和Windows操作系统。设计目标中强调了软件的性能特点,如高效压缩、二级缓冲技术、大文件支持以及友好的用户界面。此外,文档还概述了程序的主要函数及其功能,包括哈夫曼编码、索引编码和解码等关键操作。" 在数据结构课程设计中,哈夫曼树是一种重要的数据结构,常用于数据压缩。哈夫曼树,也称为最优二叉树,是一种带权重的二叉树,它的构造原则是:树中任一非叶节点的权值等于其左子树和右子树的权值之和,且所有叶节点都在同一层上。在这个文件压缩程序中,哈夫曼树被用来生成针对文件中字符的最优编码,以达到高效的压缩效果。 1. 压缩过程: - 首先,程序统计文件中每个字符出现的频率,构建哈夫曼树。频率高的字符对应较短的编码,反之则对应较长的编码。这样可以使得频繁出现的字符用较少的位来表示,从而降低存储空间。 - 接着,使用哈夫曼编码将原始文件中的字符转换为对应的编码序列,完成压缩。 2. 解压缩过程: - 在解压缩时,程序需要重建哈夫曼树,并根据编码序列还原出原来的字符序列。这涉及到索引编码和解码,通过递归函数如`indexSearch`和`makeIndex`实现。 - 为了提高效率,程序采用了二级缓冲技术,它能减少磁盘I/O次数,提高读写速度。 3. 软件架构: - 项目包含了两个可执行文件,`DosHfm.exe`适用于DOS系统,体积小巧,运行速度快;而`WinHfm.exe`则为Windows环境设计,提供了更友好的图形界面。 - 程序支持最大4GB的文件压缩,这是Fat32文件系统的限制。 4. 性能特点: - 除了基本的压缩和解压缩功能外,软件还提供了一些额外的特性,如显示压缩进度、文件一致性检查等。 - 哈夫曼编码的使用提高了压缩率,而二级缓冲技术使压缩速度提升了75%以上。 这个项目不仅展示了数据结构在实际问题中的应用,还体现了软件工程的实践,包括需求分析、概要设计以及关键算法的实现。通过这样的课程设计,学生可以深入理解数据结构和算法的重要性,并掌握实际编程技能。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

STM32单片机小车硬件优化策略:优化硬件设计,让小车更稳定更可靠

![STM32单片机小车硬件优化策略:优化硬件设计,让小车更稳定更可靠](https://static.mianbaoban-assets.eet-china.com/xinyu-images/MBXY-CR-c138c506ec1b17b643c23c4884fd9882.png) # 1. STM32单片机小车硬件优化策略概述 STM32单片机小车在实际应用中,硬件优化至关重要。本文将深入探讨STM32单片机小车硬件优化策略,从硬件设计、元器件选型、安装、调试、可靠性到维护等方面进行全面的分析,旨在帮助开发者提升小车的性能、稳定性和使用寿命。 # 2. 硬件设计优化 硬件设计优化是S
recommend-type

android studio购物车源码

在Android Studio中,购物车功能通常涉及到一个应用中的UI设计、数据管理、以及可能的网络请求。源码通常包含以下几个主要部分: 1. **UI组件**:如RecyclerView用于展示商品列表,每个商品项可能是Adapter中的ViewHolder。会有一个添加到购物车按钮和一个展示当前购物车内容的部分。 2. **数据模型**:商品类(通常包含商品信息如名称、价格、图片等)、购物车类(可能存储商品列表、总价等)。 3. **添加/删除操作**:在用户点击添加到购物车时,会处理商品的添加逻辑,并可能更新数据库或缓存。 4. **数据库管理**:使用SQLite或其他持久化解