pytorch构建bp神经网络
时间: 2023-10-19 14:09:22 浏览: 108
在PyTorch中构建BP神经网络的步骤如下:
1. 导入必要的库和模块:
```python
import torch
import torch.nn as nn
import torch.optim as optim
```
2. 定义神经网络模型:
```python
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Linear(输入层特征数, 隐藏层特征数)
self.fc2 = nn.Linear(隐藏层特征数, 输出层特征数)
def forward(self, x):
x = torch.sigmoid(self.fc1(x))
x = self.fc2(x)
return x
```
3. 定义损失函数和优化器:
```python
criterion = nn.MSELoss()
optimizer = optim.SGD(net.parameters(), lr=学习率)
```
4. 训练模型:
```python
for epoch in range(训练轮数):
running_loss = 0.0
for i, data in enumerate(训练集, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
print('[%d] loss: %.3f' % (epoch + 1, running_loss / len(训练集)))
```
阅读全文