如何针对具有13个特征的波士顿房价数据集(Boston Housing Dataset)应用随机森林和AdaBoost集成学习算法来预测房价中位数?请提供详细的步骤和可能的实现过程。
时间: 2024-10-22 11:19:51 浏览: 59
boston_housing_data.zip_波士顿房价数据集
5星 · 资源好评率100%
在Python中使用Scikit-Learn库来对波士顿房价数据集应用随机森林(Random Forest)和AdaBoost集成学习算法,可以按照以下步骤进行:
1. **导入所需库**:
```python
import pandas as pd
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor, AdaBoostRegressor
from sklearn.metrics import mean_squared_error, r2_score
```
2. **加载数据**:
```python
boston = load_boston()
X = boston.data
y = boston.target
df = pd.DataFrame(boston.data, columns=boston.feature_names)
```
3. **数据预处理** (如果需要):
- 缺失值检查
- 数据标准化或归一化
4. **拆分训练集和测试集**:
```python
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```
5. **初始化模型**:
- 随机森林:
```python
rf_model = RandomForestRegressor(n_estimators=100, random_state=42)
```
- AdaBoost Regressor:
```python
ada_model = AdaBoostRegressor(random_state=42)
```
6. **拟合模型**:
```python
rf_model.fit(X_train, y_train)
ada_model.fit(X_train, y_train)
```
7. **预测**:
```python
rf_pred = rf_model.predict(X_test)
ada_pred = ada_model.predict(X_test)
```
8. **评估模型性能**:
```python
rf_rmse = np.sqrt(mean_squared_error(y_test, rf_pred))
rf_r2 = r2_score(y_test, rf_pred)
ada_rmse = np.sqrt(mean_squared_error(y_test, ada_pred))
ada_r2 = r2_score(y_test, ada_pred)
print("Random Forest:")
print(f"RMSE: {rf_rmse}, R^2 Score: {rf_r2}")
print("AdaBoost Regressor:")
print(f"RMSE: {ada_rmse}, R^2 Score: {ada_r2}")
```
阅读全文