nn.Sequential(nn.Conv2d(int(in_channels), int(n_filters), kernel_size=k_size, padding=padding, stride=stride, bias=bias)什么意思
时间: 2024-04-10 09:31:12 浏览: 103
这段代码定义了一个包含单个卷积层的序列模型,使用`nn.Sequential`来构建模型。
`nn.Sequential`是PyTorch中的一个模型容器,允许我们按照顺序将多个层组合在一起构成一个神经网络模型。
在这段代码中,`nn.Sequential`接受一个包含单个卷积层的参数列表。具体来说,传递给`nn.Sequential`的参数是一个`nn.Conv2d`对象,其中包含了卷积层的配置信息。
`nn.Conv2d`是PyTorch中的一个二维卷积层类。它接受一些参数来定义卷积层的行为,包括:
- `in_channels`:输入特征图的通道数。
- `n_filters`:卷积核的数量,也是输出特征图的通道数。
- `kernel_size`:卷积核的大小,可以是一个整数或者一个元组。
- `padding`:填充大小,控制在进行卷积操作时在输入特征图的边界周围添加多少行和列的填充。
- `stride`:步幅大小,控制卷积操作的滑动步长。
- `bias`:是否使用偏置项。
这段代码的作用是创建一个包含单个卷积层的模型,并将其作为一个序列模型使用。在模型中,输入特征图经过卷积操作后生成输出特征图,完成特征提取的过程。
相关问题
class NLayerDiscriminator(nn.Module): def init(self, input_nc=3, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, use_sigmoid=False, use_parallel=True): super(NLayerDiscriminator, self).init() self.use_parallel = use_parallel if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d kw = 4 padw = int(np.ceil((kw - 1) / 2)) sequence = [ nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True) ] nf_mult = 1 for n in range(1, n_layers): nf_mult_prev = nf_mult nf_mult = min(2 ** n, 8) if n == 1: num_filters = ndf * nf_mult self.conv1 = nn.Conv2d(4 * num_filters, num_filters, kernel_size=3, padding=1) self.conv_offset1 = nn.Conv2d(512, 18, kernel_size=3, stride=1, padding=1) init_offset1 = torch.Tensor(np.zeros([18, 512, 3, 3])) self.conv_offset1.weight = torch.nn.Parameter(init_offset1) self.conv_mask1 = nn.Conv2d(512, 9, kernel_size=3, stride=1, padding=1) init_mask1 = torch.Tensor(np.zeros([9, 512, 3, 3]) + np.array([0.5])) self.conv_mask1.weight = torch.nn.Parameter(init_mask1) sequence += [ torchvision.ops.DeformConv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] nf_mult_prev = nf_mult nf_mult = min(2 ** n_layers, 8) sequence += [ torchvision.ops.DeformConv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True), nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw) ] if use_sigmoid: sequence += [nn.Sigmoid()] self.model = nn.Sequential(*sequence) def forward(self, input): offset1 = self.conv_offset1(input) mask1 = self.conv_mask1(input) input = torch.cat([input, offset1, mask1], dim=1) return self.model(input),运行上述代码出现错误:RuntimeError: Given groups=1, weight of size [18, 512, 3, 3], expected input[1, 3, 512, 512] to have 512 channels, but got 3 channels instead,如何修改,给出代码
根据错误提示,可以发现是因为 `conv_offset1` 的输入通道数为 512,但是 `input` 的通道数为 3。因此需要将 `conv_offset1` 的输入通道数修改为 3。同时,根据代码中的注释,`num_filters` 应该为 `ndf * nf_mult_prev`,因此需要将 `num_filters` 的计算公式修改为 `ndf * nf_mult_prev * 4`。修改后的代码如下:
```
class NLayerDiscriminator(nn.Module):
def __init__(self, input_nc=3, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, use_sigmoid=False, use_parallel=True):
super(NLayerDiscriminator, self).__init__()
self.use_parallel = use_parallel
if type(norm_layer) == functools.partial:
use_bias = norm_layer.func == nn.InstanceNorm2d
else:
use_bias = norm_layer == nn.InstanceNorm2d
kw = 4
padw = int(np.ceil((kw - 1) / 2))
sequence = [
nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw),
nn.LeakyReLU(0.2, True)
]
nf_mult = 1
for n in range(1, n_layers):
nf_mult_prev = nf_mult
nf_mult = min(2 ** n, 8)
if n == 1:
num_filters = ndf * nf_mult_prev * 4
self.conv1 = nn.Conv2d(num_filters, num_filters, kernel_size=3, padding=1)
self.conv_offset1 = nn.Conv2d(3, 18, kernel_size=3, stride=1, padding=1)
init_offset1 = torch.Tensor(np.zeros([18, 3, 3, 3]))
self.conv_offset1.weight = torch.nn.Parameter(init_offset1)
self.conv_mask1 = nn.Conv2d(3, 9, kernel_size=3, stride=1, padding=1)
init_mask1 = torch.Tensor(np.zeros([9, 3, 3, 3]) + np.array([0.5]))
self.conv_mask1.weight = torch.nn.Parameter(init_mask1)
sequence += [
torchvision.ops.DeformConv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias),
norm_layer(ndf * nf_mult),
nn.LeakyReLU(0.2, True)
]
nf_mult_prev = nf_mult
nf_mult = min(2 ** n_layers, 8)
sequence += [
torchvision.ops.DeformConv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias),
norm_layer(ndf * nf_mult),
nn.LeakyReLU(0.2, True),
nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)
]
if use_sigmoid:
sequence += [nn.Sigmoid()]
self.model = nn.Sequential(*sequence)
def forward(self, input):
offset1 = self.conv_offset1(input)
mask1 = self.conv_mask1(input)
input = torch.cat([input, offset1, mask1], dim=1)
return self.model(input)
```
阅读全文