写一个nvidia orin c++版本推流代码
时间: 2023-09-09 20:05:18 浏览: 181
NVIDIA-英伟达-jetson orin 模块设计指南
### 回答1:
以下是一个基本的 NVIDIA Orin C 版本的推流代码示例,使用 NVIDIA Video Codec SDK 和 GStreamer 库:
```c
#include <gst/gst.h>
#include <gst/gstinfo.h>
#include <nvbuf_utils.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <cudaEGL.h>
#include <cuda_gl_interop.h>
#include <gst-nvmessage.h>
#include <gst-nvevent.h>
#define SRC_WIDTH 1920
#define SRC_HEIGHT 1080
#define FPS 30
#define BITRATE 4000000
#define GOP_LENGTH 30
static gboolean bus_callback (GstBus *bus, GstMessage *message, gpointer data) {
GMainLoop *loop = (GMainLoop *) data;
switch (GST_MESSAGE_TYPE (message)) {
case GST_MESSAGE_ERROR:
g_print ("Received error from element %s: %s\n",
GST_OBJECT_NAME (message->src), message->structure->name);
g_print ("Debugging information: %s\n",
gst_structure_to_string (message->structure));
g_main_loop_quit (loop);
break;
case GST_MESSAGE_WARNING:
g_print ("Received warning from element %s: %s\n",
GST_OBJECT_NAME (message->src), message->structure->name);
g_print ("Debugging information: %s\n",
gst_structure_to_string (message->structure));
break;
case GST_MESSAGE_EOS:
g_print ("End-Of-Stream reached.\n");
g_main_loop_quit (loop);
break;
case GST_MESSAGE_INFO:
g_print ("Received info from element %s: %s\n",
GST_OBJECT_NAME (message->src), message->structure->name);
g_print ("Debugging information: %s\n",
gst_structure_to_string (message->structure));
break;
case GST_MESSAGE_ELEMENT:
if (gst_nv_message_is_event (message)) {
GstNvEvent *nv_event = gst_nv_event_new_from_message (message);
if (nv_event->type == GST_NVEVENT_STREAM_START) {
g_print ("Stream started.\n");
}
gst_nv_event_unref (nv_event);
}
break;
default:
g_print ("Unexpected message received.\n");
break;
}
return TRUE;
}
int main(int argc, char *argv[]) {
GstElement *pipeline, *source, *streammux, *sink, *nvvidconv, *enc, *filter, *parser, *mux;
GstBus *bus;
GMainLoop *loop;
GstCaps *caps;
guint bus_watch_id;
cudaEGLStreamConnection cuda_conn;
EGLDisplay egl_display;
cudaEGLStreamProducer cuda_producer;
CUcontext cuda_context;
CUeglFrame cuda_frame;
GstMapInfo map_info;
GstBuffer *buffer;
GstFlowReturn ret;
guint i;
/* Initialize GStreamer */
gst_init (&argc, &argv);
loop = g_main_loop_new (NULL, FALSE);
/* Create elements */
pipeline = gst_pipeline_new ("pipeline");
source = gst_element_factory_make ("v4l2src", "source");
streammux = gst_element_factory_make ("nvstreammux", "streammux");
sink = gst_element_factory_make ("nvv4l2h265enc", "sink");
nvvidconv = gst_element_factory_make ("nvvideoconvert", "nvvidconv");
enc = gst_element_factory_make ("omxh265enc", "enc");
filter = gst_element_factory_make ("caps
### 回答2:
NVIDIA Orin C 是一款用于自动驾驶系统的芯片。要编写 NVIDIA Orin C 版本的推流代码,需要使用与该芯片兼容的编程语言,如CUDA C++。
以下是一个简单示例:
```cpp
#include <iostream>
#include <cuda.h>
#include <cuda_runtime.h>
// 定义推流函数并执行推流操作
__global__ void streamData(int* inputData, int* outputData, int size) {
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < size) {
outputData[idx] = inputData[idx] * 2; // 对输入数据进行简单处理
}
}
int main() {
const int dataSize = 16; // 输入数据大小
int inputData[dataSize] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16};
int outputData[dataSize];
int* devInputData;
int* devOutputData;
// 分配内存并将数据复制到设备
cudaMalloc((void**)&devInputData, dataSize * sizeof(int));
cudaMalloc((void**)&devOutputData, dataSize * sizeof(int));
cudaMemcpy(devInputData, inputData, dataSize * sizeof(int), cudaMemcpyHostToDevice);
// 设定线程块大小和网格大小
int blockSize = 4;
int numBlocks = (dataSize + blockSize - 1) / blockSize;
// 执行推流操作
streamData<<<numBlocks, blockSize>>>(devInputData, devOutputData, dataSize);
// 将结果从设备复制回主机
cudaMemcpy(outputData, devOutputData, dataSize * sizeof(int), cudaMemcpyDeviceToHost);
// 输出结果
for (int i = 0; i < dataSize; i++) {
std::cout << outputData[i] << " ";
}
std::cout << std::endl;
// 释放内存
cudaFree(devInputData);
cudaFree(devOutputData);
return 0;
}
```
这段代码使用CUDA C++编写了一个简单的推流操作,通过将输入数据乘以2,对输入数组进行了简单处理。首先,在主函数中定义了输入数据、输出数据和设备数据指针。然后,分配了设备内存并将输入数据复制到设备。接着,设置了线程块大小和网格大小,以便在设备上执行推流函数。最后,将处理后的数据从设备复制回主机,然后输出结果。最后释放设备内存。
需要注意的是,这只是一个简单的示例代码,实际应用中可能还需要进行更多的处理和优化。编写 NVIDIA Orin C 版本的推流代码需要根据具体应用的需求和硬件架构进行更详细的设计和实现。
阅读全文