matlab遗传算法解决旅行商问题
时间: 2024-10-05 14:00:19 浏览: 41
在MATLAB中使用遗传算法(Genetic Algorithm, GA)解决旅行商问题是将GA应用到组合优化问题的经典案例之一。以下是一个简化的遗传算法TSP解决方案示例:
```matlab
% 导入所需库
if ~isToolboxAvailable('optimization')
error('Please install the Optimization Toolbox to run this code.');
end
% 假设城市数据与之前一样
cities = load('city_data.mat');
% 遗传算法参数设置
popSize = 50; % 种群大小
ngen = 100; % 代数
mutationRate = 0.05; % 变异率
crossoverRate = 0.8; % 交叉率
fitnessFcn = @(x) tspFitnessFunction(x, cities); % TSP适应度函数
% 初始化种群
population = zeros(popSize, size(cities, 1));
% 遗传算法核心循环
for gen = 1:ngen
% 评估当前种群的适应度
fitnessValues = arrayfun(fitnessFcn, population);
% 选择操作
parents = selectParents(population, fitnessValues);
% 交叉操作
children = crossover(parents, crossoverRate);
% 变异操作
mutatedChildren = mutate(children, mutationRate);
% 合并新生成的个体
population = [population; mutatedChildren];
% 清除过大的种群
population = population(1:end-size(population, 1)+1, :);
% 检查是否找到最优解
if isBestSolutionFound(population, fitnessValues)
break;
end
end
% 提取最优解
[bestFitness, bestSolution] = findMinfitness(population, fitnessValues);
fprintf('Optimal path: %s\n', mat2str(bestSolution, ','));
fprintf('Path length: %.2f km\n', tspFitnessFunction(bestSolution, cities));
% tspFitnessFunction 函数用于计算适应度(路径长度)
function fitness = tspFitnessFunction(solution, cities)
path_length = tsp(cities(sub2ind(size(cities), solution, 1)));
fitness = 1 / path_length; % 对于最小化问题,用倒数作为适应度
end
% 辅助函数
function selected = selectParents(population, fitnessValues)
% 随机选择或按适应度排序选取父母
% 可选的进化策略有轮盘赌选择、锦标赛选择等
end
function children = crossover(parents, crossoverRate)
% 实现两点交叉或其他交叉方式
end
function mutatedChildren = mutate(children, mutationRate)
% 实现单点变异等变异操作
end
阅读全文