ubuntu18.04深度学习环境搭建

时间: 2023-05-31 19:01:53 浏览: 118
### 回答1: Ubuntu 18.04深度学习环境搭建需要以下步骤: 1. 安装CUDA和cuDNN:CUDA是NVIDIA提供的用于GPU加速的并行计算平台,cuDNN是NVIDIA提供的用于深度学习的GPU加速库。可以从NVIDIA官网下载对应版本的CUDA和cuDNN,并按照官方文档进行安装。 2. 安装Anaconda:Anaconda是一个Python发行版,包含了许多常用的科学计算库和工具。可以从Anaconda官网下载对应版本的安装包,并按照官方文档进行安装。 3. 创建虚拟环境:可以使用conda命令创建一个新的虚拟环境,例如: ``` conda create --name env_name python=3.6 ``` 这将创建一个名为env_name的虚拟环境,并安装Python 3.6。 4. 安装深度学习框架:可以使用conda命令安装常用的深度学习框架,例如TensorFlow、PyTorch、Keras等,例如: ``` conda install tensorflow-gpu ``` 这将安装TensorFlow GPU版本。 5. 安装其他依赖库:根据需要安装其他依赖库,例如numpy、scipy、matplotlib等。 完成以上步骤后,就可以在虚拟环境中进行深度学习开发了。 ### 回答2: Ubuntu 18.04是一种非常优秀的开源操作系统,尤其适用于深度学习的环境搭建。在本文中,我们将为大家详细介绍在Ubuntu 18.04上如何搭建深度学习环境。 首先,我们需要安装Ubuntu 18.04操作系统。我们建议下载官方镜像进行安装。 安装完毕后,我们需要安装CUDA(NVIDIA计算统一设备架构)和cuDNN(NVIDIA深度神经网络)。以下是安装步骤: 1. 安装Cuda Toolkit 我们可以通过官网直接下载tar文件进行安装: $ wget https://developer.download.nvidia.com/compute/cuda/10.0/secure/Prod/local_installers/cuda_10.0.130_410.48_linux.run $ sudo sh cuda_10.0.130_410.48_linux.run 在安装过程中会有多项选择,我们建议选择默认选项并自定义CUDA的安装位置。 安装完成后,我们需要将CUDA添加到环境变量中。打开终端,运行以下命令: $ sudo gedit ~/.bashrc 在打开的文件的末尾添加以下代码: export PATH=/usr/local/cuda/bin:$PATH export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH 保存文件,然后运行以下命令以使配置生效: $ source ~/.bashrc 2. 安装cuDNN cuDNN是用于加速深度学习的库,我们可以在NVIDIA的官网上下载。请注意,您需要注册才能下载库。 下载后将压缩包解压缩,并将文件复制到CUDA的安装目录中: $ tar -xzvf cudnn-10.0-linux-x64-v7.4.2.24.tgz $ cd cuda $ sudo cp include/cudnn.h /usr/local/cuda/include $ sudo cp lib64/libcudnn* /usr/local/cuda/lib64 $ sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn* 3. 安装Anaconda Anaconda是一个强大的Python包管理器,可以轻松管理Python和相关库的版本。我们可以通过官方网站下载并安装Anaconda。 安装完成后,打开终端,输入以下命令以检查是否安装成功: $ conda list 如果显示了安装包列表,则说明安装成功。 4. 创建虚拟环境 为了避免不同的Python库版本之间的冲突,我们建议使用虚拟环境进行开发。使用以下命令创建一个名为env的虚拟环境: $ conda create -n env python=3.7 此命令将创建一个名为env的虚拟环境,并将Python版本设置为3.7。 5. 安装所需的Python库 安装深度学习需要的Python库非常重要,以下是必要库的清单: $ conda install -n env numpy matplotlib pandas jupyter scikit-learn tensorflow-gpu keras 请注意,虽然我们使用了tensorflow-gpu库,但这意味着你需要一张NVIDIA GPU显卡并正确设置CUDA和cuDNN。 如果您的电脑没有NVIDIA GPU显卡,则不需要安装tensorflow-gpu库。 6. 使用Jupyter Jupyter是一个非常好的交互式开发环境,我们建议在虚拟环境中安装jupyter。输入以下命令: $ conda install -n env jupyter 然后输入以下命令启动jupyter: $ jupyter notebook 最后,您将能够成功地在Ubuntu 18.04上搭建深度学习环境并开始进行深度学习开发。 ### 回答3: 深度学习是当今热门的领域之一,如果要在Ubuntu 18.04上搭建深度学习环境,需要以下几个步骤: 1. 安装 NVIDIA 显卡驱动 要在Ubuntu上使用深度学习,必须安装视频和GPU驱动程序。相比于CPU,在GPU上训练深度学习模型要快很多,因此推荐使用Nvidia GPU。 首先你需要下载并安装NVIDIA的驱动程序,可以使用下面的命令查看可用的版本: ``` ubuntu-drivers devices ``` 选择最新版本的驱动程序(如果你的GPU是较旧的版本,可以考虑选择旧版本的驱动程序)并安装: ``` sudo apt install nvidia-driver-<version> ``` 2. 安装CUDA和cuDNN CUDA和cuDNN是与NVIDIA GPU兼容的深度学习框架。CUDA为GPU提供并行计算解决方案,cuDNN用于优化深度学习模型的性能。 可以使用以下命令安装CUDA: ``` sudo apt install nvidia-cuda-toolkit ``` 对于cuDNN,需要先从Nvidia开发者网站下载相对应的cuDNN版本,解压并将文件复制到/usr/local/cuda/路径下: ``` sudo cp <path_to_downloaded_file>/libcudnn* /usr/local/cuda/include/ sudo cp <path_to_downloaded_file>/libcudnn* /usr/local/cuda/lib64/ ``` 3. 配置Anaconda Anaconda是一个包含许多用于深度学习的科学计算库的平台,因此我们需要安装Anaconda。 首先从Anaconda官网下载适用于Ubuntu的Anaconda安装包,然后运行以下命令来安装: ``` bash Anaconda<version>-Linux-x86_64.sh ``` 4. 创建虚拟环境 为了保持深度学习环境的干净和整洁,我们将在Anaconda上创建虚拟环境并在其中安装所有必要的包。 使用以下命令创建具有Python3的新虚拟环境: ``` conda create --name <env_name> python=3.6 ``` 处于安全起见,我们建议使用Python3.6来进行深度学习。 使用以下命令激活虚拟环境: ``` conda activate <env_name> ``` 5. 安装深度学习框架 在虚拟环境中使用以下命令安装需要的深度学习框架,如Tensorflow、Keras、PyTorch 等等: ``` conda install tensorflow keras pytorch torchvision -c pytorch ``` 最后,您已成功地在Ubuntu 18.04上搭建了深度学习环境。现在您可以使用Python和相应的深度学习框架,从而开始探索深度学习的奇妙世界。

相关推荐

最新推荐

recommend-type

如何解决Ubuntu18.04循环登录/卡在开机界面/无法进入图形界面的问题

主要介绍了如何解决Ubuntu18.04循环登录/卡在开机界面/无法进入图形界面的问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
recommend-type

如何在Ubuntu 18.04(实体机)上配置OpenWRT的开发环境

主要介绍了如何在Ubuntu 18.04(实体机)上配置OpenWRT的开发环境,本文通过图文并茂的形式给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
recommend-type

Ubuntu18.04安装 PyCharm并使用 Anaconda 管理的Python环境

主要介绍了Ubuntu18.04安装 PyCharm并使用 Anaconda 管理的Python环境的教程,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
recommend-type

VMware虚拟机中Ubuntu18.04无法连接网络的解决办法

主要为大家详细介绍了VMware虚拟机中Ubuntu18.04无法连接网络的解决办法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
recommend-type

VMware15虚拟机安装Ubuntu18.04的图文教程

主要介绍了VMware15虚拟机安装Ubuntu18.04的图文教程,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

爬虫与大数据分析:挖掘数据价值,洞察趋势

![python网站爬虫技术实战](https://img-blog.csdnimg.cn/20181107141901441.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2hpaGVsbA==,size_16,color_FFFFFF,t_70) # 1. 爬虫基础与技术** 爬虫,又称网络蜘蛛,是一种自动化的程序,用于从互联网上抓取数据。其工作原理是模拟浏览器行为,通过发送请求并解析响应来获取网页内容。 爬虫技术涉及多种技术,
recommend-type

解释一下下面每句话的含义@RequestMapping(value = "gcGl") public String gcGl(Gcgl gcGl, Model model) { List<Gcgl> list = gcglService.findList(gcGl); if (list!=null&&list.size()>0) { model.addAttribute("gcGl", list.get(0)); }else { model.addAttribute("gcGl", gcGl); } return "modules/tjxx/gc08glForm"; }

这段代码是一个Java方法,用于处理HTTP请求,具体含义如下: - @RequestMapping(value = "gcGl"):这是一个注解,表示该方法会处理名为"gcGl"的请求,即当用户访问该请求时,会调用该方法。 - public String gcGl(Gcgl gcGl, Model model):这是方法的声明,它有两个参数:一个是Gcgl类型的gcGl,另一个是Model类型的model。方法的返回值是一个字符串类型。 - List<Gcgl> list = gcglService.findList(gcGl):这行代码调用了一个名为findList的方法,该方法接受一个
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。