已知一组关键字序列为{5,88,12,56,71,28,33,43,93,17},哈希表长为13,哈希函数为H(key)=key%13,请用线性探测再散列、二次线性探测再散列以及链地址法解决冲突构造这组关键字的哈希表,并计算查找成功时的平均查找长度。请编写C++代码实现上述功能

时间: 2024-03-23 11:41:43 浏览: 19
线性探测再散列: ```c++ #include <iostream> #define MAXSIZE 13 using namespace std; int hashTable[MAXSIZE] = {0}; void insert(int key) { int pos = key % MAXSIZE; if (hashTable[pos] == 0) { hashTable[pos] = key; } else { int i = 1; while (hashTable[(pos + i) % MAXSIZE] != 0) { i++; } hashTable[(pos + i) % MAXSIZE] = key; } } int search(int key) { int pos = key % MAXSIZE; int i = 0; while (hashTable[(pos + i) % MAXSIZE] != key) { i++; if (hashTable[(pos + i) % MAXSIZE] == 0 || i == MAXSIZE) { return -1; } } return (pos + i) % MAXSIZE; } int main() { int arr[10] = {5,88,12,56,71,28,33,43,93,17}; for (int i = 0; i < 10; i++) { insert(arr[i]); } for (int i = 0; i < MAXSIZE; i++) { cout << hashTable[i] << " "; } cout << endl; int pos = search(33); if (pos != -1) { cout << "Find key 33 at position " << pos << endl; } else { cout << "Key 33 not found" << endl; } return 0; } ``` 二次线性探测再散列: ```c++ #include <iostream> #define MAXSIZE 13 using namespace std; int hashTable[MAXSIZE] = {0}; void insert(int key) { int pos = key % MAXSIZE; if (hashTable[pos] == 0) { hashTable[pos] = key; } else { int i = 1; while (hashTable[(pos + i*i) % MAXSIZE] != 0) { i++; } hashTable[(pos + i*i) % MAXSIZE] = key; } } int search(int key) { int pos = key % MAXSIZE; int i = 0; while (hashTable[(pos + i*i) % MAXSIZE] != key) { i++; if (hashTable[(pos + i*i) % MAXSIZE] == 0 || i == MAXSIZE) { return -1; } } return (pos + i*i) % MAXSIZE; } int main() { int arr[10] = {5,88,12,56,71,28,33,43,93,17}; for (int i = 0; i < 10; i++) { insert(arr[i]); } for (int i = 0; i < MAXSIZE; i++) { cout << hashTable[i] << " "; } cout << endl; int pos = search(33); if (pos != -1) { cout << "Find key 33 at position " << pos << endl; } else { cout << "Key 33 not found" << endl; } return 0; } ``` 链地址法: ```c++ #include <iostream> #include <vector> #define MAXSIZE 13 using namespace std; struct Node { int val; Node* next; Node(int x) : val(x), next(NULL) {} }; vector<Node*> hashTable(MAXSIZE, NULL); void insert(int key) { int pos = key % MAXSIZE; if (hashTable[pos] == NULL) { hashTable[pos] = new Node(key); } else { Node* p = hashTable[pos]; while (p->next != NULL) { p = p->next; } p->next = new Node(key); } } int search(int key) { int pos = key % MAXSIZE; Node* p = hashTable[pos]; int cnt = 0; while (p != NULL) { if (p->val == key) { return cnt; } p = p->next; cnt++; } return -1; } int main() { int arr[10] = {5,88,12,56,71,28,33,43,93,17}; for (int i = 0; i < 10; i++) { insert(arr[i]); } for (int i = 0; i < MAXSIZE; i++) { cout << i << ": "; Node* p = hashTable[i]; while (p != NULL) { cout << p->val << " "; p = p->next; } cout << endl; } int cnt = search(33); if (cnt != -1) { cout << "Find key 33, search " << cnt+1 << " times" << endl; } else { cout << "Key 33 not found" << endl; } return 0; } ``` 其中,查找成功时的平均查找长度为指定关键字的查找长度之和与关键字总数的商。

相关推荐

最新推荐

recommend-type

C语言基于哈希表实现通讯录

主要为大家详细介绍了C语言基于哈希表实现通讯录,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
recommend-type

C#中哈希表(HashTable)用法实例详解(添加/移除/判断/遍历/排序等)

主要介绍了C#中哈希表(HashTable)用法,简单讲述了哈希表的原理并结合实例形式详细分析了C#针对哈希表进行添加、移除、判断、遍历、排序等操作的实现技巧,需要的朋友可以参考下
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

hive中 的Metastore

Hive中的Metastore是一个关键的组件,它用于存储和管理Hive中的元数据。这些元数据包括表名、列名、表的数据类型、分区信息、表的存储位置等信息。Hive的查询和分析都需要Metastore来管理和访问这些元数据。 Metastore可以使用不同的后端存储来存储元数据,例如MySQL、PostgreSQL、Oracle等关系型数据库,或者Hadoop分布式文件系统中的HDFS。Metastore还提供了API,使得开发人员可以通过编程方式访问元数据。 Metastore的另一个重要功能是跟踪表的版本和历史。当用户对表进行更改时,Metastore会记录这些更改,并且可以让用户回滚到
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

软件工程每个学期的生活及学习目标

软件工程每个学期的生活及学习目标可能包括以下内容: 1. 学习软件开发的基本理论和实践知识,掌握常用的编程语言和开发工具。 2. 熟悉软件开发的流程和方法,了解软件工程的标准和规范。 3. 掌握软件需求分析、设计、开发、测试、部署和维护的技能,能够独立完成简单的软件开发任务。 4. 培养团队合作的能力,学会与他人进行有效的沟通和协作,共同完成软件开发项目。 5. 提高自己的计算机技术水平,了解最新的软件开发技术和趋势,积极参与开源社区和技术交流活动。 6. 注重学习方法和习惯的培养,养成良好的学习和生活习惯,保持健康的身心状态。 7. 积极参加校内外的实践活动和比赛,拓展自己的视