matlabkmeans聚类算法代码
时间: 2023-08-28 08:18:05 浏览: 127
以下是一个简单的 MATLAB 实现的 k-means 聚类算法的代码:
```matlab
function [index_cluster, cluster = kmeans_func(data, cluster_num)
[m, n = size(data);
cluster = data(randperm(m, cluster_num), :); % 从 m 个点中随机选择 cluster_num 个点作为初始聚类中心点
epoch_max = 1000; % 最大次数
therad_lim = 0.001; % 中心变化阈值
epoch_num = 0;
while(epoch_num < epoch_max)
epoch_num = epoch_num + 1;
% distance1 存储每个点到各聚类中心的欧氏距离
for i = 1:cluster_num
distance = (data - repmat(cluster(i, :), m, 1)).^2;
distance1(:, i) = sqrt(sum(distance'));
end
[~, index_cluster = min(distance1'); % index_cluster 取值范围 1~cluster_num
% cluster_new 存储新的聚类中心
for j = 1:cluster_num
cluster_new(j, :) = mean(data(find(index_cluster == j), :));
end
% 如果新的聚类中心和上一轮的聚类中心距离和大于 therad_lim,更新聚类中心,否则算法结束
if (sqrt(sum((cluster_new - cluster).^2)) > therad_lim)
cluster = cluster_new;
else
break;
end
end
end
```
这段代码实现了 k-means 聚类算法,通过传入数据和要划分的簇的数量,返回每个数据点所属的簇标签和最终的聚类中心。算法迭代更新聚类中心和重新分配数据点,直到满足结束条件(中心变化小于阈值或达到最大次数)。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* [k-means聚类算法(matlab实现)](https://blog.csdn.net/qq_40276082/article/details/130231301)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"]
- *3* [Matlab实现Kmeans聚类算法](https://blog.csdn.net/qq_37904531/article/details/128839657)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文