有相关的示例代码吗
时间: 2024-02-27 18:51:51 浏览: 78
这里提供一个使用PyTorch实现自编码器对图片进行无监督分类的示例代码,供参考:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torch.utils.data as data
import torchvision.transforms as transforms
import torchvision.datasets as datasets
# 定义自编码器模型
class Autoencoder(nn.Module):
def __init__(self):
super(Autoencoder, self).__init__()
self.encoder = nn.Sequential(
nn.Conv2d(3, 16, kernel_size=3, stride=2, padding=1),
nn.ReLU(),
nn.Conv2d(16, 32, kernel_size=3, stride=2, padding=1),
nn.ReLU(),
nn.Conv2d(32, 64, kernel_size=3, stride=2, padding=1),
nn.ReLU(),
nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1),
nn.ReLU()
)
self.decoder = nn.Sequential(
nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1),
nn.ReLU(),
nn.ConvTranspose2d(64, 32, kernel_size=4, stride=2, padding=1),
nn.ReLU(),
nn.ConvTranspose2d(32, 16, kernel_size=4, stride=2, padding=1),
nn.ReLU(),
nn.ConvTranspose2d(16, 3, kernel_size=4, stride=2, padding=1),
nn.Sigmoid()
)
def forward(self, x):
x = self.encoder(x)
x = self.decoder(x)
return x
# 加载数据集
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor()
])
train_set = datasets.ImageFolder(root='D:/wjd', transform=transform)
train_loader = data.DataLoader(train_set, batch_size=32, shuffle=True)
# 训练自编码器
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = Autoencoder().to(device)
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
num_epochs = 10
for epoch in range(num_epochs):
running_loss = 0.0
for data in train_loader:
images, _ = data
images = images.to(device)
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, images)
loss.backward()
optimizer.step()
running_loss += loss.item() * images.size(0)
epoch_loss = running_loss / len(train_loader.dataset)
print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, epoch_loss))
# 提取特征向量并聚类
features = []
labels = []
with torch.no_grad():
for data in train_loader:
images, target = data
images = images.to(device)
outputs = model.encoder(images)
features.append(outputs.cpu().numpy())
labels.append(target.numpy())
features = np.concatenate(features, axis=0)
labels = np.concatenate(labels, axis=0)
from sklearn.cluster import KMeans
kmeans = KMeans(n_clusters=5, random_state=0).fit(features)
# 打印聚类结果
print(kmeans.labels_)
```
这个示例代码中,我们使用了PyTorch来实现自编码器模型,并使用ImageFolder类来加载数据集。在训练过程中,我们使用均方误差作为损失函数,并使用Adam优化器来更新模型参数。在训练完毕后,我们使用模型的编码器部分来提取特征向量,并使用K-Means算法对特征向量进行聚类,从而对图片进行无监督分类。
阅读全文