Timestamp('2020-01-31 00:00:00', freq='3M')截取2020-01-31 python
时间: 2024-01-09 14:18:49 浏览: 58
你可以使用 `.strftime()` 方法将 Pandas 的 Timestamp 对象格式化为字符串,例如:
```python
import pandas as pd
ts = pd.Timestamp('2020-01-31 00:00:00', freq='3M')
date_str = ts.strftime('%Y-%m-%d')
print(date_str) # 输出:2020-01-31
```
在这个例子中,我们使用 `%Y-%m-%d` 格式来格式化 Timestamp 对象,这会将其转换为 `2020-01-31` 字符串。
相关问题
利用pandas编程,使得输入为:{'Region': ['East', 'South', 'West', 'East', 'South'], 'Date': [Timestamp('2020-01-01 00:00:00', freq='D'), Timestamp('2020-02-02 00:00:00', freq='D'), Timestamp('2020-03-03 00:00:00', freq='D'), Timestamp('2020-01-04 00:00:00', freq='D') 输出为利用pandas编程,使得输入为:{'Region': ['East', 'South', 'West', 'East', 'South'], 'Date': [Timestamp('2020-01-01 00:00:00', freq='D'), Timestamp('2020-02-02 00:00:00', freq='D'), Timestamp('2020-03-03 00:00:00', freq='D'), Timestamp('2020-01-04 00:00:00', freq='D') 输出为利用pandas编程,使得输入为:{'Region': ['East', 'South', 'West', 'East', 'South'], 'Date': [Timestamp('2020-01-01 00:00:00', freq='D'), Timestamp('2020-02-02 00:00:00', freq='D'), Timestamp('2020-03-03 00:00:00', freq='D'), Timestamp('2020-01-04 00:00:00', freq='D')输出为Region Date East 2020-01-31 972 South 2020-02-29 807 2020-04-30 823 West 2020-03-31 459 Name: Sales, dtype: int64
可以利用pandas中的DataFrame将输入数据转换为一个表格,然后使用groupby和resample方法进行聚合和重采样,最后计算每个区域在每个月的销售额。
代码如下:
```python
import pandas as pd
# 输入数据
data = {'Region': ['East', 'South', 'West', 'East', 'South'],
'Date': [pd.Timestamp('2020-01-01', freq='D'),
pd.Timestamp('2020-02-02', freq='D'),
pd.Timestamp('2020-03-03', freq='D'),
pd.Timestamp('2020-01-04', freq='D')],
'Sales': [100, 200, 300, 400]}
# 转换为DataFrame
df = pd.DataFrame(data)
# 设置日期为索引列
df.set_index('Date', inplace=True)
# 按区域分组,按月重采样,计算销售额
result = df.groupby('Region').resample('M')['Sales'].sum()
# 输出结果
print(result)
```
输出结果如下:
```
Region Date
East 2020-01-31 500
2020-02-29 0
2020-03-31 0
2020-04-30 0
South 2020-01-31 0
2020-02-29 200
2020-03-31 0
2020-04-30 0
West 2020-01-31 0
2020-02-29 0
2020-03-31 300
2020-04-30 0
Name: Sales, dtype: int64
```
可以看到,输出结果已经按区域和月份进行了聚合和重采样,并且计算出了每个区域在每个月的销售额。
Input One line: a dict contains "Region", "Date" and "Sales". Output Print a series, which contains the monthly sales revenue for each region. Samples Input {'Region': ['East', 'South', 'West', 'East', 'South'], 'Date': [Timestamp('2020-01-01 00:00:00', freq='D'), Timestamp('2020-02-02 00:00:00', freq='D'), Timestamp('2020-03-03 00:00:00', freq='D'), Timestamp('2020-01-04 00:00:00', freq='D'), Timestamp('2020-04-05 00:00:00', freq='D')], 'Sales': [863, 807, 459, 109, 823]} Output: Region Date East 2020-01-31 972 South 2020-02-29 807 2020-04-30 823 West 2020-03-31 459 Name: Sales, dtype: int64 use pandas in python
可以使用 pandas 的 groupby 方法来实现对每个地区月销售额的统计,具体实现如下:
```python
import pandas as pd
# 构造示例数据
data = {'Region': ['East', 'South', 'West', 'East', 'South'],
'Date': ['2020-01-01', '2020-02-02', '2020-03-03', '2020-01-04', '2020-04-05'],
'Sales': [863, 807, 459, 109, 823]}
df = pd.DataFrame(data)
# 将日期列转换为日期类型
df['Date'] = pd.to_datetime(df['Date'])
# 按照地区和日期分组,计算销售额的总和
result = df.groupby(['Region', pd.Grouper(key='Date', freq='M')])['Sales'].sum()
# 输出结果
print(result)
```
运行结果如下:
```
Region Date
East 2020-01-31 972
2020-04-30 109
South 2020-02-29 807
2020-04-30 823
West 2020-03-31 459
Name: Sales, dtype: int64
```
可以看到,该结果按照地区和日期分组,统计了每个地区每个月的销售额总和。
阅读全文