src_pts = np.float32([keypoint1[m.queryIdx].pt for m in goodMatchePoints]).reshape(-1, 1, 2) dst_pts = np.float32([keypoint2[m.trainIdx].pt for m in goodMatchePoints]).reshape(-1, 1, 2) M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)怎么输出这段代码中通过ransac算法优化的结果
时间: 2024-02-27 15:55:58 浏览: 133
在这段代码中,cv2.findHomography函数返回的M矩阵即为通过RANSAC算法优化后的单应性矩阵。M矩阵是一个3x3的矩阵,它将第一个图像中的像素坐标映射到第二个图像中的像素坐标。如果你想输出这个矩阵,可以使用以下代码:
```
print("Homography Matrix:")
print(M)
```
此外,函数还返回了一个掩码mask,它指示了哪些匹配点被认为是内点,哪些是外点。如果你想输出内点的数量,可以使用以下代码:
```
inliers = np.sum(mask)
print("Number of inliers:", inliers)
```
希望这能帮助你理解如何输出RANSAC算法优化的结果。
相关问题
import cv2 import numpy as np # 读取两幅图像 img1 = cv2.imread('D:\wzk\JIEMIAN\images\er_duibidu.jpg') img2 = cv2.imread('D:\wzk\JIEMIAN\images\yi_duibidu.jpg') # 将两幅图像转换为灰度图像 gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY) gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY) # 提取图像特征点 orb = cv2.ORB_create() kp1, des1 = orb.detectAndCompute(gray1, None) kp2, des2 = orb.detectAndCompute(gray2, None) # 匹配特征点 matcher = cv2.DescriptorMatcher_create(cv2.DESCRIPTOR_MATCHER_BRUTEFORCE_HAMMING) matches = matcher.match(des1, des2) # 选择最佳匹配点 matches = sorted(matches, key=lambda x: x.distance) good_matches = matches[:int(len(matches)*0.15)] # 绘制特征点连接图 img3 = cv2.drawMatches(img1, kp1, img2, kp2, good_matches, None, flags=cv2.DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS) # 计算变换矩阵 src_pts = np.float32([kp1[m.queryIdx].pt for m in good_matches]).reshape(-1, 1, 2) dst_pts = np.float32([kp2[m.trainIdx].pt for m in good_matches]).reshape(-1, 1, 2) M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0) # 拼接图像 result = cv2.warpPerspective(img1, M, (img1.shape[1] + img2.shape[1], img1.shape[0])) result[0:img2.shape[0], 0:img2.shape[1]] = img2 # 保存连接图 cv2.imwrite('D:\wzk\JIEMIAN\Result\ORB-pz.jpg', img3) # 保存第二幅图像 cv2.imwrite('D:\wzk\JIEMIAN\Result\ORB-pj.jpg', result) # 显示结果 cv2.namedWindow("Keypoint Matches", cv2.WINDOW_NORMAL) cv2.imshow("Keypoint Matches", img3) cv2.namedWindow("Result",cv2.WINDOW_NORMAL) cv2.imshow('Result', result) cv2.waitKey(0) cv2.destroyAllWindows()改进为对文件夹内的多幅图像进行配准拼接
可以使用循环遍历文件夹内的所有图像,对每幅图像进行配准拼接,最终将所有拼接结果合并成一张大图像。
以下是示例代码:
```
import cv2
import numpy as np
import os
# 定义文件夹路径和结果保存路径
folder_path = 'D:\wzk\JIEMIAN\images'
result_path = 'D:\wzk\JIEMIAN\Result\ORB-pj.jpg'
# 获取文件夹内所有图像路径
img_paths = [os.path.join(folder_path, f) for f in os.listdir(folder_path) if f.endswith('.jpg')]
# 遍历所有图像,进行配准拼接
result = cv2.imread(img_paths[0])
for i in range(1, len(img_paths)):
img = cv2.imread(img_paths[i])
# 将两幅图像转换为灰度图像
gray1 = cv2.cvtColor(result, cv2.COLOR_BGR2GRAY)
gray2 = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 提取图像特征点
orb = cv2.ORB_create()
kp1, des1 = orb.detectAndCompute(gray1, None)
kp2, des2 = orb.detectAndCompute(gray2, None)
# 匹配特征点
matcher = cv2.DescriptorMatcher_create(cv2.DESCRIPTOR_MATCHER_BRUTEFORCE_HAMMING)
matches = matcher.match(des1, des2)
# 选择最佳匹配点
matches = sorted(matches, key=lambda x: x.distance)
good_matches = matches[:int(len(matches)*0.15)]
# 计算变换矩阵
src_pts = np.float32([kp1[m.queryIdx].pt for m in good_matches]).reshape(-1, 1, 2)
dst_pts = np.float32([kp2[m.trainIdx].pt for m in good_matches]).reshape(-1, 1, 2)
M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
# 拼接图像
result = cv2.warpPerspective(result, M, (result.shape[1] + img.shape[1], result.shape[0]))
result[0:img.shape[0], result.shape[1]-img.shape[1]:] = img
# 保存拼接结果
cv2.imwrite(result_path, result)
# 显示结果
cv2.namedWindow("Result",cv2.WINDOW_NORMAL)
cv2.imshow('Result', result)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
代码中使用了 `os` 模块来遍历文件夹内所有图像的路径,然后对每幅图像进行配准拼接。最终将所有拼接结果合并成一张大图像,并保存到指定路径。
阅读全文