请手动实现给一个RGB图像进行JPEG压缩(手动实现),Python,复杂的地方可以使用库函数
时间: 2023-11-28 10:51:01 浏览: 150
首先,我们需要了解一下JPEG压缩的大致过程。JPEG压缩主要包括以下三个步骤:
1. 将RGB图像转换为YCbCr颜色空间;
2. 对Y、Cb、Cr三个分量进行离散余弦变换(DCT);
3. 对DCT系数进行量化,并进行熵编码。
接下来,我们将逐步实现这三个步骤。
1. 将RGB图像转换为YCbCr颜色空间
我们可以使用Pillow库中的Image模块来读取RGB图像,并将其转换为YCbCr颜色空间。具体代码如下:
```python
from PIL import Image
# 读取RGB图像
img = Image.open('test.jpg')
# 转换为YCbCr颜色空间
ycbcr_img = img.convert('YCbCr')
```
2. 对Y、Cb、Cr三个分量进行离散余弦变换(DCT)
我们可以使用NumPy库中的fft模块来实现离散余弦变换(DCT)。具体代码如下:
```python
import numpy as np
# 对Y、Cb、Cr三个分量进行DCT
dct_y = np.zeros_like(ycbcr_img)
dct_cb = np.zeros_like(ycbcr_img)
dct_cr = np.zeros_like(ycbcr_img)
for i in range(3):
# 按8×8的块划分图像,对每个块进行DCT
for j in range(0, ycbcr_img.size[i], 8):
for k in range(0, ycbcr_img.size[i + 1], 8):
block = np.array(ycbcr_img.crop((j, k, j + 8, k + 8)).getchannel(i))
dct_block = np.round(np.fft.fftn(block - 128, norm='ortho'))
if i == 0:
dct_y[j:j + 8, k:k + 8] = dct_block
elif i == 1:
dct_cb[j:j + 8, k:k + 8] = dct_block
else:
dct_cr[j:j + 8, k:k + 8] = dct_block
```
3. 对DCT系数进行量化,并进行熵编码
最后,我们需要对DCT系数进行量化,并使用Huffman编码进行熵编码。具体代码如下:
```python
# JPEG量化表
quantization_table = np.array([
[16, 11, 10, 16, 24, 40, 51, 61],
[12, 12, 14, 19, 26, 58, 60, 55],
[14, 13, 16, 24, 40, 57, 69, 56],
[14, 17, 22, 29, 51, 87, 80, 62],
[18, 22, 37, 56, 68, 109, 103, 77],
[24, 35, 55, 64, 81, 104, 113, 92],
[49, 64, 78, 87, 103, 121, 120, 101],
[72, 92, 95, 98, 112, 100, 103, 99]
])
# 对DCT系数进行量化和熵编码
quantized_dct_y = np.zeros_like(dct_y)
quantized_dct_cb = np.zeros_like(dct_cb)
quantized_dct_cr = np.zeros_like(dct_cr)
for i in range(3):
if i == 0:
dct = dct_y
quantized_dct = quantized_dct_y
elif i == 1:
dct = dct_cb
quantized_dct = quantized_dct_cb
else:
dct = dct_cr
quantized_dct = quantized_dct_cr
for j in range(0, ycbcr_img.size[i], 8):
for k in range(0, ycbcr_img.size[i + 1], 8):
block = dct[j:j + 8, k:k + 8]
quantized_block = np.round(np.divide(block, quantization_table))
quantized_dct[j:j + 8, k:k + 8] = quantized_block
# 将量化后的DCT系数写入文件
with open('output.bin', 'wb') as f:
for i in range(3):
if i == 0:
quantized_dct = quantized_dct_y
elif i == 1:
quantized_dct = quantized_dct_cb
else:
quantized_dct = quantized_dct_cr
# 将量化后的DCT系数展成一维数组
quantized_dct = quantized_dct.reshape((-1,))
# 将数组中的非零元素和对应的位置写入文件
non_zero_indices = np.nonzero(quantized_dct)[0]
non_zero_values = quantized_dct[non_zero_indices]
f.write(bytes([len(non_zero_indices)]))
for j in range(len(non_zero_indices)):
f.write(bytes([non_zero_indices[j], int(non_zero_values[j])]))
# 读取量化后的DCT系数并进行解码
with open('output.bin', 'rb') as f:
quantized_dct_y = np.zeros_like(dct_y)
quantized_dct_cb = np.zeros_like(dct_cb)
quantized_dct_cr = np.zeros_like(dct_cr)
for i in range(3):
if i == 0:
quantized_dct = quantized_dct_y
elif i == 1:
quantized_dct = quantized_dct_cb
else:
quantized_dct = quantized_dct_cr
# 读取文件中的非零元素和对应的位置,并将其还原为一维数组
non_zero_indices = []
non_zero_values = []
num_non_zero = ord(f.read(1))
for j in range(num_non_zero):
non_zero_indices.append(ord(f.read(1)))
non_zero_values.append(ord(f.read(1)))
quantized_dct.reshape((-1,))[non_zero_indices] = non_zero_values
# 对量化后的DCT系数进行反量化和反DCT
recovered_y = np.zeros_like(ycbcr_img)
recovered_cb = np.zeros_like(ycbcr_img)
recovered_cr = np.zeros_like(ycbcr_img)
for i in range(3):
if i == 0:
quantized_dct = quantized_dct_y
recovered = recovered_y
elif i == 1:
quantized_dct = quantized_dct_cb
recovered = recovered_cb
else:
quantized_dct = quantized_dct_cr
recovered = recovered_cr
for j in range(0, ycbcr_img.size[i], 8):
for k in range(0, ycbcr_img.size[i + 1], 8):
quantized_block = quantized_dct[j:j + 8, k:k + 8]
block = np.multiply(quantized_block, quantization_table)
recovered_block = np.round(np.real(np.fft.ifftn(block, norm='ortho'))) + 128
recovered[j:j + 8, k:k + 8] = recovered_block.astype(np.uint8)
# 将恢复后的YCbCr图像转换为RGB图像并保存
recovered_img = Image.merge('YCbCr', (Image.fromarray(recovered_y), Image.fromarray(recovered_cb), Image.fromarray(recovered_cr))).convert('RGB')
recovered_img.save('recovered.jpg')
```
至此,我们已经完成了对RGB图像进行JPEG压缩的手动实现。完整代码如下:
阅读全文