给我一份在pytorch框架下attention_unet的代码,输出特征图维度为3
时间: 2024-02-05 09:13:24 浏览: 69
好的,以下是在PyTorch框架下实现的attention_unet代码,输出特征图维度为3:
```python
import torch
import torch.nn as nn
class DoubleConv(nn.Module):
def __init__(self, in_channels, out_channels):
super(DoubleConv, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
def forward(self, x):
return self.conv(x)
class AttentionBlock(nn.Module):
def __init__(self, F_g, F_l, F_int):
super(AttentionBlock, self).__init__()
self.W_g = nn.Sequential(
nn.Conv2d(F_g, F_int, kernel_size=1, stride=1, padding=0, bias=True),
nn.BatchNorm2d(F_int)
)
self.W_x = nn.Sequential(
nn.Conv2d(F_l, F_int, kernel_size=1, stride=1, padding=0, bias=True),
nn.BatchNorm2d(F_int)
)
self.psi = nn.Sequential(
nn.Conv2d(F_int, 1, kernel_size=1, stride=1, padding=0, bias=True),
nn.BatchNorm2d(1),
nn.Sigmoid()
)
self.relu = nn.ReLU(inplace=True)
def forward(self, g, x):
g1 = self.W_g(g)
x1 = self.W_x(x)
psi = self.relu(g1 + x1)
psi = self.psi(psi)
return x * psi
class UpSample(nn.Module):
def __init__(self, in_channels, out_channels, bilinear=True):
super(UpSample, self).__init__()
if bilinear:
self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
else:
self.up = nn.ConvTranspose2d(in_channels // 2, in_channels // 2, kernel_size=2, stride=2)
self.conv = DoubleConv(in_channels, out_channels)
def forward(self, x1, x2):
x1 = self.up(x1)
x = torch.cat([x2, x1], dim=1)
return self.conv(x)
class AttentionUNet(nn.Module):
def __init__(self, in_channels=3, out_channels=3):
super(AttentionUNet, self).__init__()
self.down1 = DoubleConv(in_channels, 64)
self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)
self.down2 = DoubleConv(64, 128)
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
self.down3 = DoubleConv(128, 256)
self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2)
self.down4 = DoubleConv(256, 512)
self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2)
self.center = DoubleConv(512, 1024)
self.up4 = UpSample(1024, 512)
self.att4 = AttentionBlock(512, 256, 128)
self.up3 = UpSample(512, 256)
self.att3 = AttentionBlock(256, 128, 64)
self.up2 = UpSample(256, 128)
self.att2 = AttentionBlock(128, 64, 32)
self.up1 = UpSample(128, 64)
self.att1 = AttentionBlock(64, 32, 16)
self.output = nn.Conv2d(64, out_channels, kernel_size=1)
def forward(self, x):
x1 = self.down1(x)
x2 = self.pool1(x1)
x2 = self.down2(x2)
x3 = self.pool2(x2)
x3 = self.down3(x3)
x4 = self.pool3(x3)
x4 = self.down4(x4)
x5 = self.pool4(x4)
x5 = self.center(x5)
x = self.up4(x5, x4)
x = self.att4(g=x4, x=x)
x = self.up3(x, x3)
x = self.att3(g=x3, x=x)
x = self.up2(x, x2)
x = self.att2(g=x2, x=x)
x = self.up1(x, x1)
x = self.att1(g=x1, x=x)
x = self.output(x)
return x
```
注意到这里的输出特征图维度为3,因此我们在最后的`nn.Conv2d`中将输出通道数设为3。如果需要修改输入输出维度以及网络结构,可以根据实际情况进行修改。
阅读全文