用pytorch写出针对MNIST数据集的DeepFool算法的代码,并写出测试代码用于计算由DeepFool算法得到的对抗性示例攻击神经网络的错误率
时间: 2024-05-09 17:20:32 浏览: 70
GAN pytorch实现,基于MNIST数据集
以下是使用PyTorch实现DeepFool算法的代码:
```
import torch
import torch.nn.functional as F
from torch.autograd import Variable
def deepfool(image, net, num_classes=10, overshoot=0.02, max_iter=50):
"""
:param image: 输入的图像
:param net: 目标神经网络
:param num_classes: 类别数
:param overshoot: 用于增加扰动的参数
:param max_iter: 最大迭代次数
:return: 对抗性样本
"""
image = image.unsqueeze(0)
image = Variable(image, requires_grad=True)
net.eval()
out = net(image)
_, init_pred = torch.max(out, 1)
f_image = out[0, init_pred]
w = torch.zeros(num_classes, 1).cuda()
r_tot = torch.zeros_like(image).cuda()
for iter in range(max_iter):
out.backward(retain_graph=True)
grad_orig = image.grad.data.clone()
for k in range(1, num_classes):
net.zero_grad()
out[:, k].backward(retain_graph=True)
grad_k = image.grad.data.clone()
# 计算w和f的值
w_k = (grad_k - grad_orig).cpu()
f_k = (out[0, k] - f_image).cpu()
# 计算扰动量
pert_k = abs(f_k) / torch.norm(w_k.flatten())
# 选择最小的扰动量
if iter == 0:
pert = pert_k
w = w_k
else:
idx = torch.norm(w_k.flatten(), p=1) < torch.norm(w.flatten(), p=1)
pert[idx] = pert_k[idx]
w[idx, :] = w_k[idx, :]
# 计算总的扰动量
r_tot = torch.clamp(r_tot + pert.unsqueeze(1) * w, -overshoot, overshoot)
# 生成对抗性图像
image = torch.clamp(image + r_tot, 0, 1).detach_()
image.requires_grad_()
net.zero_grad()
out = net(image)
_, final_pred = torch.max(out, 1)
if final_pred.item() == init_pred.item():
return None
else:
return image.squeeze(0)
```
我们可以使用以下测试代码来计算由DeepFool算法得到的对抗性示例攻击神经网络的错误率:
```
def test(net, test_loader, eps):
num_correct = 0
num_samples = 0
attack_success = 0
for images, labels in test_loader:
images = images.cuda()
labels = labels.cuda()
adv_images = deepfool(images, net)
if adv_images is not None:
attack_success += 1
outputs = net(adv_images)
else:
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
num_samples += labels.size(0)
num_correct += (predicted == labels).sum().item()
acc = num_correct / num_samples
attack_success_rate = attack_success / num_samples
print('Accuracy: {:.2f}%'.format(acc * 100))
print('Attack success rate: {:.2f}%'.format(attack_success_rate * 100))
```
其中,`eps`表示扰动量的上限。在测试过程中,我们生成对抗性样本,并将其输入到神经网络中进行预测。如果DeepFool算法成功生成了对抗性样本,则错误率会比没有攻击的情况高。
阅读全文