多层感知器神经网络模型代码matlab
时间: 2023-07-22 17:27:58 浏览: 156
以下是一个简单的三层多层感知器神经网络模型的Matlab代码示例:
```matlab
% 设置训练数据
inputs = [0 0; 0 1; 1 0; 1 1]';
targets = [0 1 1 0];
% 设置网络结构和训练参数
hiddenLayerSize = 4;
net = patternnet(hiddenLayerSize);
net.trainFcn = 'trainlm';
net.performFcn = 'mse';
net.trainParam.epochs = 1000;
net.trainParam.goal = 0.01;
% 训练网络
[net,tr] = train(net,inputs,targets);
% 使用网络进行预测
outputs = net(inputs);
% 绘制训练误差和测试误差曲线
plotperform(tr);
% 绘制决策边界
plot2d(net,inputs,targets);
```
在上面的代码中,我们首先设置了训练数据和目标值,然后定义了一个三层的多层感知器神经网络模型。接着,我们设置了网络的训练参数,包括隐藏层大小、训练函数、性能函数、训练轮数和训练目标误差。然后我们使用 `train` 函数训练网络,并使用训练好的网络进行预测。最后,我们绘制了训练误差和测试误差曲线,以及决策边界。
这只是一个简单的示例代码,实际的多层感知器神经网络模型可能会更加复杂和精细。不过,这个例子可以帮助你了解如何使用Matlab来实现一个基本的三层多层感知器神经网络模型。
相关问题
多层感知器神经网络模型matlab代码
以下是一个简单的多层感知器神经网络模型的 Matlab 代码示例。该模型包含一个输入层、一个隐藏层和一个输出层。
```matlab
% 设置训练数据
input_data = [0 0; 0 1; 1 0; 1 1];
output_data = [0; 1; 1; 0];
% 初始化参数
hidden_layer_size = 4;
input_layer_size = size(input_data, 2);
output_layer_size = size(output_data, 2);
learning_rate = 0.1;
num_iterations = 10000;
% 随机初始化权重和偏置
theta1 = rand(hidden_layer_size, input_layer_size + 1);
theta2 = rand(output_layer_size, hidden_layer_size + 1);
% 训练模型
for i = 1:num_iterations
% 前向传播
input_data_with_bias = [ones(size(input_data, 1), 1) input_data];
hidden_layer_input = input_data_with_bias * theta1';
hidden_layer_output = sigmoid(hidden_layer_input);
hidden_layer_output_with_bias = [ones(size(hidden_layer_output, 1), 1) hidden_layer_output];
output_layer_input = hidden_layer_output_with_bias * theta2';
output_layer_output = sigmoid(output_layer_input);
% 反向传播
output_layer_error = output_layer_output - output_data;
hidden_layer_error = (output_layer_error * theta2) .* sigmoid_gradient([ones(size(hidden_layer_output, 1), 1) hidden_layer_input]);
hidden_layer_error = hidden_layer_error(:, 2:end);
delta1 = hidden_layer_error' * input_data_with_bias;
delta2 = output_layer_error' * hidden_layer_output_with_bias;
theta1 = theta1 - (learning_rate * delta1);
theta2 = theta2 - (learning_rate * delta2);
end
% 测试模型
test_data = [0 0; 0 1; 1 0; 1 1];
test_data_with_bias = [ones(size(test_data, 1), 1) test_data];
hidden_layer_input = test_data_with_bias * theta1';
hidden_layer_output = sigmoid(hidden_layer_input);
hidden_layer_output_with_bias = [ones(size(hidden_layer_output, 1), 1) hidden_layer_output];
output_layer_input = hidden_layer_output_with_bias * theta2';
output_layer_output = sigmoid(output_layer_input);
disp(output_layer_output);
```
其中,`sigmoid` 和 `sigmoid_gradient` 函数分别为 sigmoid 函数和 sigmoid 函数的导数,其实现如下:
```matlab
function result = sigmoid(x)
result = 1 ./ (1 + exp(-x));
end
function result = sigmoid_gradient(x)
result = sigmoid(x) .* (1 - sigmoid(x));
end
```
阅读全文