输入为1111大小数据集用wgan生成1111灰度图代码
时间: 2024-03-06 07:47:21 浏览: 76
以下是一个简单的 WGAN-GP 的 PyTorch 实现,可以用来训练一个生成 1111 大小的灰度图数据集。请注意,这只是一个示例,需要根据实际情况进行修改和调整。
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.datasets as datasets
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from torchvision.utils import save_image
import os
# 定义超参数
batch_size = 64
lr = 0.0001
latent_dim = 100
img_size = 1111
channels = 1
n_epochs = 200
n_critic = 5
clip_value = 0.01
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# 定义数据处理
transform = transforms.Compose([
transforms.Resize(img_size),
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
dataset = datasets.ImageFolder(root='path/to/dataset', transform=transform)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
# 定义生成器和判别器
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
self.model = nn.Sequential(
nn.Linear(latent_dim, 128),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(128, 256),
nn.BatchNorm1d(256, 0.8),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(256, 512),
nn.BatchNorm1d(512, 0.8),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(512, 1024),
nn.BatchNorm1d(1024, 0.8),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(1024, img_size * channels),
nn.Tanh()
)
def forward(self, z):
img = self.model(z)
img = img.view(img.size(0), channels, img_size, img_size)
return img
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.model = nn.Sequential(
nn.Linear(img_size * channels, 512),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(512, 256),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(256, 1),
)
def forward(self, img):
img_flat = img.view(img.size(0), -1)
validity = self.model(img_flat)
return validity
# 初始化生成器和判别器
generator = Generator().to(device)
discriminator = Discriminator().to(device)
# 定义损失函数和优化器
adversarial_loss = nn.MSELoss()
optimizer_G = optim.RMSprop(generator.parameters(), lr=lr)
optimizer_D = optim.RMSprop(discriminator.parameters(), lr=lr)
# 训练
for epoch in range(n_epochs):
for i, (imgs, _) in enumerate(dataloader):
# 训练判别器
for _ in range(n_critic):
# 生成随机噪声
z = torch.randn(imgs.shape[0], latent_dim).to(device)
# 生成假图片
gen_imgs = generator(z)
# 计算损失
d_loss = -torch.mean(discriminator(imgs.to(device))) + torch.mean(discriminator(gen_imgs.detach()))
# 反向传播和优化
optimizer_D.zero_grad()
d_loss.backward()
optimizer_D.step()
# 截断权重
for p in discriminator.parameters():
p.data.clamp_(-clip_value, clip_value)
# 训练生成器
# 生成随机噪声
z = torch.randn(imgs.shape[0], latent_dim).to(device)
# 生成假图片
gen_imgs = generator(z)
# 计算损失
g_loss = -torch.mean(discriminator(gen_imgs))
# 反向传播和优化
optimizer_G.zero_grad()
g_loss.backward()
optimizer_G.step()
# 打印训练信息
if i % 10 == 0:
print("[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]" % (epoch, n_epochs, i, len(dataloader), d_loss.item(), g_loss.item()))
# 保存生成器的输出
if epoch % 10 == 0:
os.makedirs('output', exist_ok=True)
save_image(gen_imgs.data[:25], 'output/%d.png' % epoch, nrow=5, normalize=True)
```
请根据实际情况修改代码中的数据路径、超参数等内容。
阅读全文