用pytorch写一段代码:以西储大学CWRU轴承故障的振动信号数据库作为模型的训练集从用CNN网络对电机轴承的一维振动信号做故障诊断,
时间: 2023-03-03 08:42:31 浏览: 465
好的,以下是使用PyTorch进行训练的代码,以CWRU轴承故障振动信号数据库为训练集,对电机轴承进行一维振动信号的故障诊断:
首先,需要导入PyTorch和相关库:
```
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import pandas as pd
```
接着,需要读取CWRU轴承故障振动信号数据库的数据。我们可以使用NumPy库读取CSV文件中的数据,并将其转换为PyTorch张量:
```
data = pd.read_csv('data.csv', header=None)
data = np.array(data)
data = torch.from_numpy(data).float()
```
假设我们的数据集包括了轴承的振动信号以及相应的故障类型标签,例如正常、内圈故障、外圈故障等。我们可以将数据集划分为训练集和测试集:
```
train_data = data[:8000, :-1]
train_labels = data[:8000, -1].long()
test_data = data[8000:, :-1]
test_labels = data[8000:, -1].long()
```
在训练之前,我们需要定义一个CNN模型。下面是一个简单的模型,包括两个卷积层和两个全连接层:
```
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.conv1 = nn.Conv1d(1, 16, kernel_size=5, stride=2)
self.conv2 = nn.Conv1d(16, 32, kernel_size=5, stride=2)
self.fc1 = nn.Linear(2880, 256)
self.fc2 = nn.Linear(256, 10)
def forward(self, x):
x = self.conv1(x)
x = nn.functional.relu(x)
x = nn.functional.max_pool1d(x, kernel_size=2, stride=2)
x = self.conv2(x)
x = nn.functional.relu(x)
x = nn.functional.max_pool1d(x, kernel_size=2, stride=2)
x = x.view(x.size(0), -1)
x = self.fc1(x)
x = nn.functional.relu(x)
x = self.fc2(x)
return x
```
然后,我们可以定义优化器和损失函数。这里我们选择Adam优化器和交叉熵损失函数:
```
model = CNN()
optimizer = optim.Adam(model.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()
```
接下来是训练模型的过程。我们将训练集分批进行训练,并在测试集上进行评估:
```
epochs = 10
batch_size = 32
for epoch in range(epochs):
running_loss = 0.0
for i in range(0, len(train_data), batch_size):
inputs = train_data[i:i+batch_size].unsqueeze(1)
labels = train_labels[i:i+batch_size]
optimizer.zero_grad()
outputs = model(inputs)
阅读全文