基于pytorch的arcface人脸识别系统中包含ArcFace函数的models.py文件代码
时间: 2023-06-16 16:02:14 浏览: 187
基于MTCNN+arcface的人脸检测识别(pytorch)
5星 · 资源好评率100%
以下是基于PyTorch的ArcFace人脸识别系统中包含ArcFace函数的models.py文件代码:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class ArcFace(nn.Module):
def __init__(self, in_features, out_features, s=30.0, m=0.50, easy_margin=False):
super(ArcFace, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.s = s
self.m = m
self.weight = nn.Parameter(torch.FloatTensor(out_features, in_features))
nn.init.xavier_uniform_(self.weight)
self.easy_margin = easy_margin
def forward(self, x, label):
cosine = F.linear(F.normalize(x), F.normalize(self.weight))
sine = torch.sqrt(1.0 - torch.pow(cosine, 2))
phi = cosine * self.cos_m - sine * self.sin_m
if self.easy_margin:
phi = torch.where(cosine > 0, phi, cosine)
else:
phi = torch.where(cosine > self.th, phi, cosine - self.mm)
one_hot = torch.zeros(cosine.size(), device='cuda')
one_hot.scatter_(1, label.view(-1, 1).long(), 1)
output = (one_hot * phi) + ((1.0 - one_hot) * cosine)
output *= self.s
return output
def __repr__(self):
return self.__class__.__name__ + '(' \
+ 'in_features=' + str(self.in_features) \
+ ', out_features=' + str(self.out_features) \
+ ', s=' + str(self.s) \
+ ', m=' + str(self.m) + ')'
```
该代码实现了ArcFace函数,其中包括了前向传播(forward)函数和初始化(init)函数。在前向传播函数中,通过输入的x和label计算出cosine和sine,然后利用ArcFace的公式计算出phi,再根据是否启用easy_margin来调整phi的值。最后,根据one_hot和phi的值计算出输出output并乘以s。初始化函数中定义了所需的超参数和权重矩阵,并使用xavier_uniform_函数初始化权重。
阅读全文