pycharm单卡多机训练
时间: 2024-01-19 20:04:03 浏览: 151
基于pytorch的单机多卡分布式训练源码
在PyCharm中进行单卡多机训练,你可以使用PyTorch的分布式训练功能。下面是一个简单的示例代码:
```python
import torch
import torch.distributed as dist
from torch.multiprocessing import Process
def train(rank, world_size):
# 初始化进程组
dist.init_process_group(backend='nccl', init_method='tcp://localhost:23456', rank=rank, world_size=world_size)
# 创建模型和优化器
model = YourModel()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
# 将模型和优化器放到GPU上
model = model.to(rank)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[rank])
# 定义训练数据
train_dataset = YourDataset()
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, sampler=train_sampler)
# 训练循环
for epoch in range(10):
train_sampler.set_epoch(epoch)
for data, target in train_loader:
data = data.to(rank)
target = target.to(rank)
optimizer.zero_grad()
output = model(data)
loss = torch.nn.functional.cross_entropy(output, target)
loss.backward()
optimizer.step()
def main():
# 设置进程数量和主机数量
world_size = 2
processes = []
# 启动多个进程进行训练
for rank in range(world_size):
p = Process(target=train, args=(rank, world_size))
p.start()
processes.append(p)
# 等待所有进程结束
for p in processes:
p.join()
if __name__ == '__main__':
main()
```
请注意,上述代码中的`YourModel`和`YourDataset`需要根据你的实际情况进行替换。此外,你还需要根据你的网络设置来修改`init_method`参数中的IP地址和端口号。
阅读全文