高斯过程回归matlab预测
时间: 2023-08-05 10:11:00 浏览: 260
高斯过程回归(GPR)是一种基于高斯过程的统计学习方法,用于对时间序列进行预测。在MATLAB中,可以使用fitrgp函数来实现高斯过程回归预测。首先,需要准备训练数据,包括输入变量x和对应的输出变量y。然后,使用fitrgp函数拟合高斯过程回归模型,指定相应的参数,如基函数类型、拟合方法和预测方法。接下来,可以使用resubPredict函数对训练数据进行预测,并将结果与真实值进行比较。最后,可以使用plot函数将训练数据和预测结果可视化。下面是一个简单的示例代码:
```matlab
rng(0,'twister'); % 设置随机种子,以便结果可复现
n = 1000;
x = linspace(-10,10,n)';
y = 1 + x*5e-2 + sin(x)./x + 0.2*randn(n,1);
gprMdl = fitrgp(x,y,'Basis','linear','FitMethod','exact','PredictMethod','exact');
ypred = resubPredict(gprMdl);
plot(x,y,'b.');
hold on;
plot(x,ypred,'r','LineWidth',1.5);
xlabel('x');
ylabel('y');
legend('Data','GPR predictions');
hold off;
```
这段代码生成了一个简单的训练数据集,然后使用fitrgp函数拟合了一个基于线性基函数的高斯过程回归模型。最后,使用resubPredict函数对训练数据进行预测,并使用plot函数将训练数据和预测结果可视化。
#### 引用[.reference_title]
- *1* *2* [区间预测 | MATLAB实现QGPR高斯过程分位数回归多变量时间序列区间预测](https://blog.csdn.net/kjm13182345320/article/details/130879172)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item]
- *3* [Gaussian Processes Regression(GPR) 高斯过程回归 Matlab 实现](https://blog.csdn.net/zbbmm/article/details/88544783)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
阅读全文