提供一下c++端调用onnx模型并通过tensorRT加速推理的代码案例并注释
时间: 2024-06-12 07:06:13 浏览: 150
以下是一个简单的C++代码示例,演示如何使用ONNX模型进行推理,并使用TensorRT进行加速。该示例使用TensorRT 5.1.5和CUDA 10.0进行编译。
首先,我们需要加载ONNX模型并创建推理引擎:
```c++
#include <iostream>
#include <fstream>
#include <sstream>
#include <vector>
#include <numeric>
#include <chrono>
#include "NvInfer.h"
#include "NvOnnxParser.h"
using namespace nvinfer1;
using namespace nvonnxparser;
// Load the ONNX model from file and create inference engine
ICudaEngine* createEngine(const char* onnxModelPath, int maxBatchSize)
{
// Load ONNX model from file
IBuilder* builder = createInferBuilder(gLogger);
INetworkDefinition* network = builder->createNetworkV2(0U);
auto parser = createParser(*network, gLogger);
parser->parseFromFile(onnxModelPath, static_cast<int>(ILogger::Severity::kERROR));
// Set up engine builder and build engine
builder->setMaxBatchSize(maxBatchSize);
builder->setMaxWorkspaceSize(1 << 28); // 256MB
builder->setFp16Mode(true);
builder->setInt8Mode(false);
builder->setStrictTypeConstraints(true);
ICudaEngine* engine = builder->buildCudaEngine(*network);
network->destroy();
parser->destroy();
builder->destroy();
return engine;
}
```
下一步是创建输入和输出缓冲区,并将输入数据复制到缓冲区中:
```c++
// Create input and output buffers for inference
void* createBuffer(int size)
{
void* buffer;
cudaMalloc(&buffer, size);
return buffer;
}
void* createInputBuffer(int batchSize, int inputSize)
{
return createBuffer(batchSize * inputSize * sizeof(float));
}
void* createOutputBuffer(int batchSize, int outputSize)
{
return createBuffer(batchSize * outputSize * sizeof(float));
}
void copyInputToDevice(void* buffer, const std::vector<float>& input, int batchSize, int inputSize)
{
cudaMemcpy(buffer, input.data(), batchSize * inputSize * sizeof(float), cudaMemcpyHostToDevice);
}
```
然后,我们可以运行推理并将结果从设备内存复制到主机内存:
```c++
// Run inference and copy output to host memory
void doInference(ICudaEngine* engine, const std::vector<float>& input, std::vector<float>& output, int batchSize, int inputSize, int outputSize)
{
IExecutionContext* context = engine->createExecutionContext();
void* inputBuffer = createInputBuffer(batchSize, inputSize);
void* outputBuffer = createOutputBuffer(batchSize, outputSize);
// Copy input to device
copyInputToDevice(inputBuffer, input, batchSize, inputSize);
// Run inference
const int nbBindings = engine->getNbBindings();
std::vector<void*> buffers(nbBindings);
int inputIndex = engine->getBindingIndex("input");
int outputIndex = engine->getBindingIndex("output");
buffers[inputIndex] = inputBuffer;
buffers[outputIndex] = outputBuffer;
context->execute(batchSize, &buffers[0]);
// Copy output to host
output.resize(batchSize * outputSize);
cudaMemcpy(output.data(), outputBuffer, batchSize * outputSize * sizeof(float), cudaMemcpyDeviceToHost);
// Clean up
cudaFree(inputBuffer);
cudaFree(outputBuffer);
context->destroy();
}
```
最后,我们可以使用以下代码将上述函数组合在一起,以加载模型并运行推理:
```c++
int main(int argc, char** argv)
{
// Load ONNX model and create inference engine
const char* onnxModelPath = "model.onnx";
int maxBatchSize = 1;
ICudaEngine* engine = createEngine(onnxModelPath, maxBatchSize);
// Set up input and output buffers
int inputSize = 784;
int outputSize = 10;
std::vector<float> input(inputSize);
std::vector<float> output(outputSize);
// Generate random input data
std::generate(input.begin(), input.end(), []() { return static_cast<float>(rand() % 256) / 255.f; });
// Run inference
doInference(engine, input, output, maxBatchSize, inputSize, outputSize);
// Print output
std::cout << "Output: ";
for (float f : output) {
std::cout << f << " ";
}
std::cout << std::endl;
// Clean up
engine->destroy();
return 0;
}
```
请注意,此示例假定输入张量的名称为“input”,输出张量的名称为“output”。如果您的ONNX模型使用不同的名称,则需要相应地更改代码。
此外,TensorRT还提供了其他优化技术,例如混合精度和动态批量大小,以进一步加速推理。有关更详细的示例,请参见TensorRT SDK中的示例代码。
阅读全文