用python写代码
时间: 2024-11-05 09:03:47 浏览: 15
为了帮助您编写 Python 代码以完成实验三的任务,我将提供一个详细的步骤指南,包括数据预处理、模型构建、评估和结果分析。我们将使用 `scikit-learn` 库来实现这些任务。
### 实验步骤
#### 1. 导入必要的库
首先,导入所有必要的库:
```python
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy_score, classification_report
from sklearn.ensemble import VotingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC
from sklearn.datasets import load_iris
```
#### 2. 加载和预处理数据
##### Glass 数据集
假设 `glass.data` 和 `glass.names` 文件已经下载并保存在当前目录下。
```python
# 加载玻璃数据集
column_names = ['RI', 'Na', 'Mg', 'Al', 'Si', 'K', 'Ca', 'Ba', 'Fe', 'Type']
data = pd.read_csv('glass.data', names=column_names)
# 分离特征和标签
X = data.drop('Type', axis=1)
y = data['Type']
# 将多类别问题转换为二分类问题
y_binary = (y == 1).astype(int) # 假设类别1为正类
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y_binary, test_size=0.3, random_state=42)
# 标准化特征
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
```
##### Leukemia 数据集
假设 `leukemia.data` 文件已经下载并保存在当前目录下。
```python
# 加载白血病数据集
data_leukemia = pd.read_csv('leukemia.data', sep='\t')
X_leukemia = data_leukemia.iloc[:, 1:].values
y_leukemia = data_leukemia.iloc[:, 0].values
# 划分训练集和测试集
X_train_leukemia, X_test_leukemia, y_train_leukemia, y_test_leukemia = train_test_split(
X_leukemia, y_leukemia, test_size=0.3, random_state=42)
# 标准化特征
scaler_leukemia = StandardScaler()
X_train_leukemia_scaled = scaler_leukemia.fit_transform(X_train_leukemia)
X_test_leukemia_scaled = scaler_leukemia.transform(X_test_leukemia)
```
#### 3. 构建和评估基分类器
##### Glass 数据集
```python
# 定义基分类器
clf1 = LogisticRegression(max_iter=1000)
clf2 = DecisionTreeClassifier()
clf3 = SVC(probability=True)
# 训练基分类器
for clf in [clf1, clf2, clf3]:
clf.fit(X_train_scaled, y_train)
y_pred = clf.predict(X_test_scaled)
print(f"Classifier: {clf.__class__.__name__}")
print("Accuracy:", accuracy_score(y_test, y_pred))
print(classification_report(y_test, y_pred))
```
##### Leukemia 数据集
```python
# 训练基分类器
for clf in [clf1, clf2, clf3]:
clf.fit(X_train_leukemia_scaled, y_train_leukemia)
y_pred = clf.predict(X_test_leukemia_scaled)
print(f"Classifier: {clf.__class__.__name__}")
print("Accuracy:", accuracy_score(y_test_leukemia, y_pred))
print(classification_report(y_test_leukemia, y_pred))
```
#### 4. 构建和评估集成分类器
##### Soft 和 Hard 投票集成
```python
# 定义投票集成分类器
voting_clf_hard = VotingClassifier(estimators=[('lr', clf1), ('dt', clf2), ('svc', clf3)], voting='hard')
voting_clf_soft = VotingClassifier(estimators=[('lr', clf1), ('dt', clf2), ('svc', clf3)], voting='soft')
# 训练投票集成分类器
voting_clf_hard.fit(X_train_scaled, y_train)
voting_clf_soft.fit(X_train_scaled, y_train)
# 评估投票集成分类器
for clf, label in zip([voting_clf_hard, voting_clf_soft], ['Hard Voting', 'Soft Voting']):
y_pred = clf.predict(X_test_scaled)
print(f"Ensemble Method: {label}")
print("Accuracy:", accuracy_score(y_test, y_pred))
print(classification_report(y_test, y_pred))
```
##### 权重加权软投票集成
```python
# 计算每个基分类器的交叉验证得分
weights = []
for clf in [clf1, clf2, clf3]:
scores = cross_val_score(clf, X_train_scaled, y_train, cv=5)
weights.append(np.mean(scores))
# 定义加权软投票集成分类器
weighted_voting_clf = VotingClassifier(estimators=[('lr', clf1), ('dt', clf2), ('svc', clf3)], voting='soft', weights=weights)
# 训练加权软投票集成分类器
weighted_voting_clf.fit(X_train_scaled, y_train)
# 评估加权软投票集成分类器
y_pred = weighted_voting_clf.predict(X_test_scaled)
print("Ensemble Method: Weighted Soft Voting")
print("Accuracy:", accuracy_score(y_test, y_pred))
print(classification_report(y_test, y_pred))
```
#### 5. 结果分析
您可以根据上述输出结果进行分析,比较不同基分类器和集成方法的性能,特别是关注准确率、召回率和F1分数等指标。
希望这些代码和步骤能帮助您顺利完成实验三的任务!如果有任何问题或需要进一步的帮助,请随时告诉我。
阅读全文