def linear_regression(X,y): w = np.zeros_like(X.shape[1]) if np.linalg.det(X.T.dot(X))!=0: w = np.linalg.inv(X.T.dot(X)).dot(X.T).dot(y) return w w1 = linear_regression(X_train,y_train) w1 = pd.DataFrame(data=w1,index=X.columns,columns=['numpy_w']) w1.round(decimals=2)
时间: 2023-12-06 11:41:34 浏览: 108
这段代码实现了一个简单的线性回归模型,其中X是输入数据的特征矩阵,y是对应的标签向量。函数linear_regression()通过最小二乘法计算出回归系数w,即使得模型预测值与真实标签的差距最小的系数。如果特征矩阵X的转置矩阵X.T与X的乘积的行列式不为0,那么可以使用矩阵求逆的方式计算w;否则无法计算,返回一个全零向量。最后,将回归系数w保存在一个DataFrame对象中,并返回。
需要注意的是,这里的linear_regression()函数仅仅适用于线性关系的数据,对于非线性的数据需要使用其他方法,比如多项式回归、核函数回归等。此外,实际应用中需要对数据进行预处理,比如对特征进行归一化、处理异常值等。
相关问题
1. 已知附件中提供的数据集linearRegression_data.txt, 完成以下线性回归任务: (1) 采用参数估计的方法建立线性回归模型(可以采用标准线性回归、局部加权线性回归、岭回归中的一种);python代码
好的,我理解了你的问题。以下是标准线性回归、局部加权线性回归和岭回归的 Python 代码示例,你可以根据需要选择其中之一。
标准线性回归:
```
import numpy as np
import matplotlib.pyplot as plt
# Load data
data = np.loadtxt('linearRegression_data.txt', delimiter=',')
x = data[:, 0]
y = data[:, 1]
# Build linear regression model
X = np.vstack((np.ones(len(x)), x)).T
theta = np.linalg.inv(X.T.dot(X)).dot(X.T).dot(y)
# Plot data and model
plt.scatter(x, y)
plt.plot(x, X.dot(theta), 'r')
plt.show()
```
局部加权线性回归:
```
import numpy as np
import matplotlib.pyplot as plt
# Load data
data = np.loadtxt('linearRegression_data.txt', delimiter=',')
x = data[:, 0]
y = data[:, 1]
# Build locally weighted linear regression model
def lwlr(test_point, x, y, k=1.0):
x_mat = np.mat(x)
y_mat = np.mat(y).T
m = np.shape(x_mat)[0]
weights = np.mat(np.eye((m)))
for j in range(m):
diff_mat = test_point - x_mat[j, :]
weights[j, j] = np.exp(diff_mat * diff_mat.T / (-2.0 * k ** 2))
xTx = x_mat.T * (weights * x_mat)
if np.linalg.det(xTx) == 0.0:
print("This matrix is singular, cannot do inverse")
return
theta = xTx.I * (x_mat.T * (weights * y_mat))
return test_point * theta
# Plot data and model
y_predict = np.zeros_like(y)
for i in range(len(x)):
y_predict[i] = lwlr(x[i], x, y, k=0.03)
plt.scatter(x, y)
plt.plot(x, y_predict, 'r')
plt.show()
```
岭回归:
```
import numpy as np
import matplotlib.pyplot as plt
# Load data
data = np.loadtxt('linearRegression_data.txt', delimiter=',')
x = data[:, 0]
y = data[:, 1]
# Build ridge regression model
def ridge_regression(X, y, alpha):
XtX = X.T.dot(X)
return np.linalg.inv(XtX + alpha * np.eye(X.shape[1])).dot(X.T).dot(y)
# Plot data and model
X = np.vstack((np.ones(len(x)), x)).T
theta = ridge_regression(X, y, alpha=0.5)
plt.scatter(x, y)
plt.plot(x, X.dot(theta), 'r')
plt.show()
```
阅读全文