使用PyTorch采用CIFAR10数据集基于卷积神经网络的图像去噪,噪声使用椒盐噪声
时间: 2023-06-14 12:06:06 浏览: 140
基于pytorch进行图像去噪处理.zip
好的,下面是一个简单的示例代码,使用PyTorch实现基于卷积神经网络的图像去噪:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.datasets as datasets
import torchvision.transforms as transforms
import numpy as np
import matplotlib.pyplot as plt
# 加载CIFAR10数据集
train_dataset = datasets.CIFAR10(root='./data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
]))
# 添加椒盐噪声
def add_noise(img, noise_level):
noise = torch.randn(img.size()) * noise_level
noisy_img = img + noise
return noisy_img
# 定义卷积神经网络模型
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.conv1 = nn.Conv2d(3, 32, 3, padding=1)
self.conv2 = nn.Conv2d(32, 64, 3, padding=1)
self.conv3 = nn.Conv2d(64, 128, 3, padding=1)
self.conv4 = nn.Conv2d(128, 64, 3, padding=1)
self.conv5 = nn.Conv2d(64, 32, 3, padding=1)
self.conv6 = nn.Conv2d(32, 3, 3, padding=1)
self.relu = nn.ReLU()
self.pool = nn.MaxPool2d(2, 2)
self.upsample = nn.Upsample(scale_factor=2, mode='nearest')
def forward(self, x):
x = self.pool(self.relu(self.conv1(x)))
x = self.pool(self.relu(self.conv2(x)))
x = self.pool(self.relu(self.conv3(x)))
x = self.relu(self.conv4(x))
x = self.upsample(self.relu(self.conv5(x)))
x = self.upsample(self.relu(self.conv6(x)))
return x
# 训练模型
def train(model, device, train_loader, optimizer, epoch, noise_level):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
noisy_data = add_noise(data, noise_level).to(device)
optimizer.zero_grad()
output = model(noisy_data)
loss = nn.MSELoss()(output, data)
loss.backward()
optimizer.step()
if batch_idx % 100 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
# 测试模型
def test(model, device, test_loader, noise_level):
model.eval()
test_loss = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
noisy_data = add_noise(data, noise_level).to(device)
output = model(noisy_data)
test_loss += nn.MSELoss()(output, data).item() # sum up batch loss
test_loss /= len(test_loader.dataset)
print('Test set: Average loss: {:.4f}\n'.format(test_loss))
return test_loss
# 设置超参数
batch_size = 128
noise_level = 0.2
lr = 0.001
momentum = 0.9
epochs = 10
use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
# 加载训练集和测试集
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=2)
test_dataset = datasets.CIFAR10(root='./data', train=False, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
]))
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False, num_workers=2)
# 初始化模型和优化器
model = CNN().to(device)
optimizer = optim.SGD(model.parameters(), lr=lr, momentum=momentum)
# 训练模型并测试
train_loss = []
test_loss = []
for epoch in range(1, epochs + 1):
train(model, device, train_loader, optimizer, epoch, noise_level)
test_loss.append(test(model, device, test_loader, noise_level))
train_loss.append(train_loss)
```
上述代码中,我们定义了一个卷积神经网络模型 `CNN`,并且定义了一个添加椒盐噪声的函数 `add_noise`。在训练过程中,我们使用 `add_noise` 函数添加椒盐噪声,并且使用均方误差作为损失函数。在测试过程中,我们同样使用 `add_noise` 函数添加椒盐噪声,并且计算测试集的均方误差。最后,我们使用随机梯度下降算法进行模型训练,并且打印训练过程中的损失值和测试集的均方误差。
注意,上述代码中的模型和超参数可能需要根据实际情况进行调整,以达到更好的去噪效果。
阅读全文