cum_counts = np.cumsum(np.greater(counts, 0, dtype=np.int32))
时间: 2023-12-02 17:03:51 浏览: 162
这行代码的作用是计算一个数组中大于0的元素数量的累积和。具体解释如下:
- np.greater(counts, 0, dtype=np.int32):比较数组counts中的每个元素是否大于0,返回一个由True和False组成的布尔型数组。
- np.cumsum():对数组中的元素进行累积求和,返回一个与原数组大小相同的数组。
- np.cumsum(np.greater(counts, 0, dtype=np.int32)):这里将上面两个步骤结合起来,计算了counts数组中大于0的元素数量的累积和,得到了一个新的数组cum_counts。
例如,如果counts=[1, 2, 0, 3, 0, 0, 4],则np.greater(counts, 0, dtype=np.int32)=[1, 1, 0, 1, 0, 0, 1],np.cumsum(np.greater(counts, 0, dtype=np.int32))=[1, 2, 2, 3, 3, 3, 4],因此cum_counts=[1, 2, 2, 3, 3, 3, 4]。
相关问题
counts = multinomial.Multinomial(10, fair_probs).sample((500,)) cum_counts = counts.cumsum(dim=0)
这是使用 PyTorch 中的 multinomial 函数生成 500 个样本,每个样本都是从一个大小为 10 的多项式分布中随机采样得到的。fair_probs 是一个包含每个类别出现概率的张量。cum_counts 是一个包含每个样本的累计计数的张量。在这个张量中,每一行的第 i 个元素表示前 i 个样本中第一个出现类别 j 的位置。
import pandas as pd data = pd.read_excel('C:\Users\home\Desktop\新建文件夹(1)\支撑材料\数据\111.xlsx','Sheet5',index_col=0) data.to_csv('data.csv',encoding='utf-8') import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt df = pd.read_csv(r"data.csv", encoding='utf-8', index_col=0).reset_index(drop=True) df from sklearn import preprocessing df = preprocessing.scale(df) df covX = np.around(np.corrcoef(df.T),decimals=3) covX featValue, featVec= np.linalg.eig(covX.T) featValue, featVec def meanX(dataX): return np.mean(dataX,axis=0) average = meanX(df) average m, n = np.shape(df) m,n data_adjust = [] avgs = np.tile(average, (m, 1)) avgs data_adjust = df - avgs data_adjust covX = np.cov(data_adjust.T) covX featValue, featVec= np.linalg.eig(covX) featValue, featVec tot = sum(featValue) var_exp = [(i / tot) for i in sorted(featValue, reverse=True)] cum_var_exp = np.cumsum(var_exp) plt.bar(range(1, 14), var_exp, alpha=0.5, align='center', label='individual explained variance') plt.step(range(1, 14), cum_var_exp, where='mid', label='cumulative explained variance') plt.ylabel('Explained variance ratio') plt.xlabel('Principal components') plt.legend(loc='best') plt.show() eigen_pairs = [(np.abs(featValue[i]), featVec[:, i]) for i in range(len(featValue))] eigen_pairs.sort(reverse=True) w = np.hstack((eigen_pairs[0][1][:, np.newaxis], eigen_pairs[1][1][:, np.newaxis])) X_train_pca = data_adjust.dot(w) colors = ['r', 'b', 'g'] markers = ['s', 'x', 'o'] for l, c, m in zip(np.unique(data_adjust), colors, markers): plt.scatter(data_adjust,data_adjust, c=c, label=l, marker=m) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='lower left') plt.show()
这段代码是在进行主成分分析(PCA)的数据预处理和可视化操作。首先读取一个 Excel 文件并将其转换为 CSV 格式,然后使用 sklearn 库中的 preprocessing 模块对数据进行标准化处理,接着计算数据集的协方差矩阵并求解其特征值和特征向量,用于评估数据集的主要特征。随后,进行主成分分析,将数据集映射到低维空间,以便进行可视化展示。最后,使用 matplotlib 库进行可视化处理,展示数据在主成分空间中的分布情况。整个代码块的目的是为了帮助数据科学家更好地理解数据集的特征和分布情况,从而更好地进行建模和分析。
阅读全文