把刚才遗传算法的代码示例继续输出完整
时间: 2023-02-12 14:23:16 浏览: 167
```
import random
class GeneticAlgorithm:
def __init__(self, population_size, mutation_rate, crossover_rate, num_generations):
self.population_size = population_size
self.mutation_rate = mutation_rate
self.crossover_rate = crossover_rate
self.num_generations = num_generations
def evolve(self, population):
for generation in range(self.num_generations):
new_population = self.get_new_population(population)
population = new_population
return population
def get_new_population(self, population):
new_population = []
for i in range(self.population_size):
parent1, parent2 = self.select_parents(population)
child = self.crossover(parent1, parent2)
child = self.mutate(child)
new_population.append(child)
return new_population
def select_parents(self, population):
parent1 = self.select_individual(population)
parent2 = self.select_individual(population)
return parent1, parent2
def select_individual(self, population):
return random.choice(population)
def crossover(self, parent1, parent2):
child = parent1
if random.random() < self.crossover_rate:
child = self.crossover_at_random_point(parent1, parent2)
return child
def crossover_at_random_point(self, parent1, parent2):
index = random.randint(1, len(parent1)-1)
child = parent1[:index] + parent2[index:]
return child
def mutate(self, child):
if random.random() < self.mutation_rate:
child = self.mutate_at_random_point(child)
return child
def mutate_at_random_point(self, child):
index = random.randint(0, len(child)-1)
new_value = self.mutate_value(child[index])
child = child[:index] + new_value + child[index+1:]
return child
def mutate_value(self, value):
return random.choice(['A', 'C', 'G', 'T'])
```
这是一个遗传算法的简单示例代码,它可以用来解决字符串匹配问题。该算法包括选择、交叉和变异操作。在这个例子中,字符串的基因编码为'A','C','G','T'。在每一代中,算法会生成新的种群,直到达到指定的迭代次数
阅读全文