用matlab写一个 MobileNetV1网络模型
时间: 2023-12-03 21:02:20 浏览: 120
基于matlab的移动通信信道的建模与仿真
3星 · 编辑精心推荐
抱歉,我是AI语言模型,不具备编程能力。但是我可以为您提供MobileNetV1网络模型的代码示例,您可以参考以下代码:
```matlab
% MobileNetV1网络模型
% 定义输入图像大小
inputSize = [224 224 3];
% 定义网络层
layers = [
imageInputLayer(inputSize)
% Convolutional Layer 1
convolution2dLayer(3, 32, 'Stride', 2, 'Padding', 1, 'Bias', false)
batchNormalizationLayer
reluLayer
% Depthwise Separable Convolutional Layer 1
depthwiseConv2dLayer(3, 'Stride', 1, 'Padding', 1, 'Bias', false)
batchNormalizationLayer
reluLayer
convolution2dLayer(1, 64, 'Bias', false)
batchNormalizationLayer
reluLayer
% Depthwise Separable Convolutional Layer 2
depthwiseConv2dLayer(3, 'Stride', 2, 'Padding', 1, 'Bias', false)
batchNormalizationLayer
reluLayer
convolution2dLayer(1, 128, 'Bias', false)
batchNormalizationLayer
reluLayer
% Depthwise Separable Convolutional Layer 3
depthwiseConv2dLayer(3, 'Stride', 1, 'Padding', 1, 'Bias', false)
batchNormalizationLayer
reluLayer
convolution2dLayer(1, 128, 'Bias', false)
batchNormalizationLayer
reluLayer
% Depthwise Separable Convolutional Layer 4
depthwiseConv2dLayer(3, 'Stride', 2, 'Padding', 1, 'Bias', false)
batchNormalizationLayer
reluLayer
convolution2dLayer(1, 256, 'Bias', false)
batchNormalizationLayer
reluLayer
% Depthwise Separable Convolutional Layer 5
depthwiseConv2dLayer(3, 'Stride', 1, 'Padding', 1, 'Bias', false)
batchNormalizationLayer
reluLayer
convolution2dLayer(1, 256, 'Bias', false)
batchNormalizationLayer
reluLayer
% Depthwise Separable Convolutional Layer 6
depthwiseConv2dLayer(3, 'Stride', 2, 'Padding', 1, 'Bias', false)
batchNormalizationLayer
reluLayer
convolution2dLayer(1, 512, 'Bias', false)
batchNormalizationLayer
reluLayer
% Depthwise Separable Convolutional Layer 7-12
depthwiseConv2dLayer(3, 'Stride', 1, 'Padding', 1, 'Bias', false)
batchNormalizationLayer
reluLayer
convolution2dLayer(1, 512, 'Bias', false)
batchNormalizationLayer
reluLayer
depthwiseConv2dLayer(3, 'Stride', 1, 'Padding', 1, 'Bias', false)
batchNormalizationLayer
reluLayer
convolution2dLayer(1, 512, 'Bias', false)
batchNormalizationLayer
reluLayer
depthwiseConv2dLayer(3, 'Stride', 1, 'Padding', 1, 'Bias', false)
batchNormalizationLayer
reluLayer
convolution2dLayer(1, 512, 'Bias', false)
batchNormalizationLayer
reluLayer
depthwiseConv2dLayer(3, 'Stride', 1, 'Padding', 1, 'Bias', false)
batchNormalizationLayer
reluLayer
convolution2dLayer(1, 512, 'Bias', false)
batchNormalizationLayer
reluLayer
depthwiseConv2dLayer(3, 'Stride', 1, 'Padding', 1, 'Bias', false)
batchNormalizationLayer
reluLayer
convolution2dLayer(1, 512, 'Bias', false)
batchNormalizationLayer
reluLayer
% Depthwise Separable Convolutional Layer 13
depthwiseConv2dLayer(3, 'Stride', 2, 'Padding', 1, 'Bias', false)
batchNormalizationLayer
reluLayer
convolution2dLayer(1, 1024, 'Bias', false)
batchNormalizationLayer
reluLayer
% Depthwise Separable Convolutional Layer 14-15
depthwiseConv2dLayer(3, 'Stride', 1, 'Padding', 1, 'Bias', false)
batchNormalizationLayer
reluLayer
convolution2dLayer(1, 1024, 'Bias', false)
batchNormalizationLayer
reluLayer
% Average Pooling Layer
averagePooling2dLayer(7)
% Fully Connected Layer
fullyConnectedLayer(1000)
% Softmax Layer
softmaxLayer
% Classification Layer
classificationLayer
];
% 查看网络结构
analyzeNetwork(layers)
```
注意:这里的代码仅供参考,实际情况可能需要根据具体需求进行修改和调整。
阅读全文