import tensorflow as tf import pickle import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler import matplotlib.pyplot as plt # 从Excel文件中读取数据 data = pd.read_excel('D:\python-learn\data.xlsx', engine='openpyxl') input_data = data.iloc[:, :12].values #获取Excel文件中第1列到第12列的数据 output_data = data.iloc[:, 12:].values #获取Excel文件中第13列到最后一列的数据 # 数据归一化处理 scaler_input = MinMaxScaler() scaler_output = MinMaxScaler() input_data = scaler_input.fit_transform(input_data) output_data = scaler_output.fit_transform(output_data) # 划分训练集和验证集 X_train, X_val, y_train, y_val = train_test_split(input_data, output_data, test_size=0.1, random_state=42) # 定义神经网络模型 model = tf.keras.Sequential([ tf.keras.layers.Input(shape=(12,)), tf.keras.layers.Dense(10, activation=tf.keras.layers.LeakyReLU(alpha=0.1)), tf.keras.layers.Dense(10, activation=tf.keras.layers.LeakyReLU(alpha=0.1)), tf.keras.layers.Dense(10, activation=tf.keras.layers.LeakyReLU(alpha=0.1)), tf.keras.layers.Dense(8, activation='linear') ]) # 编译模型 model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.001), loss='mse') # 定义学习率衰减 def scheduler(epoch, lr): if epoch % 50 == 0 and epoch != 0: return lr * 0.1 else: return lr callback = tf.keras.callbacks.LearningRateScheduler(scheduler) # 训练模型 history = model.fit(X_train, y_train, validation_data=(X_val, y_val), epochs=200, batch_size=50, callbacks=[callback])这个代码中训练的数据是怎么样读取如何进行训练的(详细说明)
时间: 2024-04-21 08:29:16 浏览: 86
这段代码中使用 pandas 库中的 read_excel 函数从 Excel 文件中读取数据,其中 engine 指定为 openpyxl,表示使用 openpyxl 引擎来读取 Excel 文件。读取的数据分为 input_data 和 output_data 两个部分,分别表示输入和输出数据。接着使用 sklearn 库中的 MinMaxScaler 类对数据进行归一化处理。然后使用 train_test_split 函数将数据分为训练集和验证集。定义神经网络模型使用了 Keras 库中的 Sequential 类,其中包含了 4 个 Dense 层,分别是 10 个节点、10 个节点、10 个节点和 8 个节点,激活函数分别为 LeakyReLU 和 linear。最后使用 compile 方法编译模型,指定优化器、学习率和损失函数。定义了学习率衰减函数,使用 LearningRateScheduler 类将其作为回调函数传入 fit 方法中。最后使用 fit 方法训练模型,并将训练过程的历史记录保存在 history 变量中。
相关问题
import tensorflow as tf import pickle import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler import matplotlib.pyplot as plt # 从Excel文件中读取数据 data = pd.read_excel('D:\python-learn\data.xlsx', engine='openpyxl') input_data = data.iloc[:, :12].values #获取Excel文件中第1列到第12列的数据 output_data = data.iloc[:, 12:].values #获取Excel文件中第13列到最后一列的数据 # 数据归一化处理 scaler_input = MinMaxScaler() scaler_output = MinMaxScaler() input_data = scaler_input.fit_transform(input_data) output_data = scaler_output.fit_transform(output_data) # 划分训练集和验证集 X_train, X_val, y_train, y_val = train_test_split(input_data, output_data, test_size=0.1, random_state=42) # 定义神经网络模型 model = tf.keras.Sequential([ tf.keras.layers.Input(shape=(12,)), tf.keras.layers.Dense(10, activation=tf.keras.layers.LeakyReLU(alpha=0.1)), tf.keras.layers.Dense(10, activation=tf.keras.layers.LeakyReLU(alpha=0.1)), tf.keras.layers.Dense(10, activation=tf.keras.layers.LeakyReLU(alpha=0.1)), tf.keras.layers.Dense(8, activation='linear') ]) # 编译模型 model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.001), loss='mse') # 定义学习率衰减 def scheduler(epoch, lr): if epoch % 50 == 0 and epoch != 0: return lr * 0.1 else: return lr callback = tf.keras.callbacks.LearningRateScheduler(scheduler) # 训练模型 history = model.fit(X_train, y_train, validation_data=(X_val, y_val), epochs=200, batch_size=50, callbacks=[callback])文件中的数据是怎么样进行训练的
这段代码使用了TensorFlow框架中的Sequential模型来构建神经网络模型,并使用均方误差(MSE)作为损失函数进行训练。训练数据和验证数据是通过调用Scikit-learn库中的train_test_split()函数进行划分的,其中训练数据占90%,验证数据占10%。在训练之前,还对数据进行了归一化处理,使得数据的范围都在0到1之间。训练过程中使用了学习率衰减技术,每50个epochs将学习率降低一个数量级,以提高模型的训练效果。最后,训练过程中的损失和验证损失被保存在history变量中,可以使用matplotlib库来绘制训练过程中损失的变化趋势。
阅读全文