解释代码:def get_images(dir_path): images_list = [] for img_path in glob.glob(dir_path + "*.jpg"): images_list.append(img_path) return images_list
时间: 2024-04-20 11:24:03 浏览: 77
这段代码定义了一个名为`get_images`的函数,该函数接受一个参数`dir_path`,代表一个目录的路径。函数的目的是在指定目录下查找所有以".jpg"结尾的文件,并将它们的路径存储在一个列表中。
代码中使用了`glob.glob`函数来获取指定目录下所有的文件路径,`glob.glob`函数使用通配符来匹配文件名。`dir_path + "*.jpg"`表示在`dir_path`目录下查找所有以".jpg"结尾的文件。
接下来,通过一个循环遍历获取到的文件路径,并将它们逐一添加到 `images_list` 列表中。
最后,函数返回存储了所有图片路径的列表 `images_list`。
相关问题
将这个链接中的代码整合成VS项目可运行的代码
要将CSDN博客中的Kaggle海星目标检测比赛代码整合成Visual Studio项目可运行的代码,你需要执行以下几个步骤:
### 1. 创建Visual Studio项目
1. **打开Visual Studio**。
2. **创建新的项目**:
- 选择“创建新项目”。
- 选择“Python应用程序”模板。
- 输入项目名称和位置,然后点击“创建”。
### 2. 安装依赖库
在Visual Studio中,打开项目的终端(`View` -> `Terminal`),然后安装所需的Python库:
```bash
pip install -r requirements.txt
```
其中,`requirements.txt` 文件应包含所有必要的依赖库,例如:
```
numpy
pandas
opencv-python
matplotlib
scikit-learn
wandb
torch
torchvision
pyyaml
```
### 3. 复制代码
将博客中的代码逐段复制到相应的Python文件中。以下是各个部分的代码整理:
#### 3.1 数据预处理
创建一个名为 `data_preprocessing.py` 的文件,并将以下代码粘贴进去:
```python
import numpy as np
from tqdm.notebook import tqdm
import pandas as pd
import os
import cv2
import matplotlib.pyplot as plt
import glob
import shutil
import sys
sys.path.append('../input/tensorflow-great-barrier-reef')
from joblib import Parallel, delayed
from IPython.display import display
from bbox.utils import coco2yolo, coco2voc, voc2yolofrom bbox.utils import draw_bboxes, load_imagefrom bbox.utils import clip_bbox, str2annot, annot2str
# 设置超参数
FOLD = 1
REMOVE_NOBBOX = True
ROOT_DIR = '../input/tensorflow-great-barrier-reef/'
IMAGE_DIR = './kaggle/images'
LABEL_DIR = './kaggle/labels'
# 创建文件夹
os.makedirs(IMAGE_DIR, exist_ok=True)
os.makedirs(LABEL_DIR, exist_ok=True)
# 读取训练数据
df = pd.read_csv(f'{ROOT_DIR}/train.csv')
df['old_image_path'] = f'{ROOT_DIR}/train_images/video_' + df.video_id.astype(str) + '/' + df.video_frame.astype(str) + '.jpg'
df['image_path'] = f'{IMAGE_DIR}/' + df.image_id + '.jpg'
df['label_path'] = f'{LABEL_DIR}/' + df.image_id + '.txt'
df['annotations'] = df['annotations'].progress_apply(eval)
display(df.head(2))
# 数据清洗
df['num_bbox'] = df['annotations'].progress_apply(lambda x: len(x))
data = (df.num_bbox > 0).value_counts(normalize=True) * 100
print(f"No BBox: {data[0]:0.2f}% | With BBox: {data[1]:0.2f}%")
df = df.query("num_bbox > 0")
# 写入标注图片
def make_copy(row):
shutil.copyfile(row.old_image_path, row.image_path)
return
image_paths = df.old_image_path.tolist()
_ = Parallel(n_jobs=-1, backend='threading')(delayed(make_copy)(row) for _, row in tqdm(df.iterrows(), total=len(df)))
# 获取bbox信息
def get_bbox(annots):
bboxes = [list(annot.values()) for annot in annots]
return bboxes
def get_imgsize(row):
row['width'], row['height'] = imagesize.get(row['image_path'])
return row
np.random.seed(32)
colors = [(np.random.randint(255), np.random.randint(255), np.random.randint(255)) for _ in range(1)]
df['bboxes'] = df.annotations.progress_apply(get_bbox)
df['width'] = 1280
df['height'] = 720
# 生成yolo格式标注文件
cnt = 0
all_bboxes = []
bboxes_info = []
for row_idx in tqdm(range(df.shape[0])):
row = df.iloc[row_idx]
image_height = row.height
image_width = row.width
bboxes_coco = np.array(row.bboxes).astype(np.float32).copy()
num_bbox = len(bboxes_coco)
names = ['cots'] * num_bbox
labels = np.array([0] * num_bbox)[..., None].astype(str)
with open(row.label_path, 'w') as f:
if num_bbox < 1:
annot = ''
f.write(annot)
cnt += 1
continue
bboxes_voc = coco2voc(bboxes_coco, image_height, image_width)
bboxes_voc = clip_bbox(bboxes_voc, image_height, image_width)
bboxes_yolo = voc2yolo(bboxes_voc, image_height, image_width).astype(str)
all_bboxes.extend(bboxes_yolo.astype(float))
bboxes_info.extend([[row.image_id, row.video_id, row.sequence]] * len(bboxes_yolo))
annots = np.concatenate([labels, bboxes_yolo], axis=1)
string = annot2str(annots)
f.write(string)
print('Missing:', cnt)
```
#### 3.2 数据分割
创建一个名为 `data_split.py` 的文件,并将以下代码粘贴进去:
```python
from sklearn.model_selection import GroupKFold
# 创建Folds字段,划分训练集和验证集
kf = GroupKFold(n_splits=3)
df = df.reset_index(drop=True)
df['fold'] = -1
for fold, (train_idx, val_idx) in enumerate(kf.split(df, groups=df.video_id.tolist())):
df.loc[val_idx, 'fold'] = fold
display(df.fold.value_counts())
train_files = []
val_files = []
train_df = df.query("fold != @FOLD")
valid_df = df.query("fold == @FOLD")
train_files += list(train_df.image_path.unique())
val_files += list(valid_df.image_path.unique())
print(len(train_files), len(val_files))
```
#### 3.3 YOLOv5训练
创建一个名为 `yolov5_train.py` 的文件,并将以下代码粘贴进去:
```python
import yaml
import torch
from yolov5 import utils
# 配置参数
DIM = 3000
MODEL = 'yolov5s6'
BATCH = 4
EPOCHS = 7
OPTMIZER = 'Adam'
PROJECT = 'great-barrier-reef-public'
NAME = f'{MODEL}-dim{DIM}-fold{FOLD}'
# 创建训练和验证文件列表
with open('train.txt', 'w') as f:
for path in train_df.image_path.tolist():
f.write(path + '\n')
with open('val.txt', 'w') as f:
for path in valid_df.image_path.tolist():
f.write(path + '\n')
# 创建数据集配置文件
data = {
'path': '.',
'train': 'train.txt',
'val': 'val.txt',
'nc': 1,
'names': ['cots']
}
with open('gbr.yaml', 'w') as outfile:
yaml.dump(data, outfile, default_flow_style=False)
# 创建超参数配置文件
with open('hyp.yaml', 'w') as f:
f.write(f"lr0: 0.01\n")
f.write(f"lrf: 0.1\n")
f.write(f"momentum: 0.937\n")
f.write(f"weight_decay: 0.0005\n")
f.write(f"warmup_epochs: 3.0\n")
f.write(f"warmup_momentum: 0.8\n")
f.write(f"warmup_bias_lr: 0.1\n")
f.write(f"box: 0.05\n")
f.write(f"cls: 0.5\n")
f.write(f"cls_pw: 1.0\n")
f.write(f"obj: 1.0\n")
f.write(f"obj_pw: 1.0\n")
f.write(f"iou_t: 0.20\n")
f.write(f"anchor_t: 4.0\n")
f.write(f"hsv_h: 0.015\n")
f.write(f"hsv_s: 0.7\n")
f.write(f"hsv_v: 0.4\n")
f.write(f"degrees: 0.0\n")
f.write(f"translate: 0.10\n")
f.write(f"scale: 0.5\n")
f.write(f"shear: 0.0\n")
f.write(f"perspective: 0.0\n")
f.write(f"flipud: 0.5\n")
f.write(f"fliplr: 0.5\n")
f.write(f"mosaic: 0.5\n")
f.write(f"mixup: 0.5\n")
f.write(f"copy_paste: 0.0\n")
# 开始训练
utils.notebook_init()
!python yolov5/train.py --img {DIM} --batch {BATCH} --epochs {EPOCHS} --optimizer {OPTMIZER} --data gbr.yaml --hyp hyp.yaml --weights {MODEL}.pt --project {PROJECT} --name {NAME} --exist-ok
```
### 4. 运行项目
1. **运行数据预处理脚本**:
- 在解决方案资源管理器中,右键点击 `data_preprocessing.py`,选择“设置为启动项”。
- 按 F5 或点击“启动”按钮运行脚本。
2. **运行数据分割脚本**:
- 在解决方案资源管理器中,右键点击 `data_split.py`,选择“设置为启动项”。
- 按 F5 或点击“启动”按钮运行脚本。
3. **运行YOLOv5训练脚本**:
- 在解决方案资源管理器中,右键点击 `yolov5_train.py`,选择“设置为启动项”。
- 按 F5 或点击“启动”按钮运行脚本。
通过以上步骤,你可以将CSDN博客中的Kaggle海星目标检测比赛代码整合成一个完整的Visual Studio项目,并在本地环境中运行。
阅读全文
相关推荐











