STM32F407 ADC相关知识,可外接可调电阻,通过调节电阻,控制LED的亮度等级。

时间: 2024-03-31 10:37:30 浏览: 22
好的,关于STM32F407 ADC的相关知识,我可以给你简单介绍一下。 首先,STM32F407芯片内部集成了多个ADC模块,可以通过编程控制来完成模拟量信号的采集。每个ADC模块都包含了多个ADC通道,可以通过设置对应的寄存器来选择需要采集的通道。 对于外接可调电阻,我们可以将其接到单片机的一个ADC通道上,通过调节电阻来改变采样电压,从而控制LED的亮度。具体地,我们可以通过以下步骤来实现: 1. 在STM32CubeMX中,配置ADC模块和对应的GPIO引脚,使其连接到可调电阻。 2. 在代码中,启动ADC采样,等待采样完成,读取ADC值并计算得到电压值。 3. 根据电压值来控制LED的亮度,可以使用PWM控制LED亮度。 下面是一个简单的代码示例,用于控制LED亮度: ```c #include "stm32f4xx_hal.h" ADC_HandleTypeDef hadc1; TIM_HandleTypeDef htim2; uint16_t adc_value; float voltage; void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_ADC1_Init(void); static void MX_TIM2_Init(void); int main(void) { HAL_Init(); SystemClock_Config(); MX_GPIO_Init(); MX_ADC1_Init(); MX_TIM2_Init(); HAL_TIM_PWM_Start(&htim2, TIM_CHANNEL_1); while (1) { HAL_ADC_Start(&hadc1); HAL_ADC_PollForConversion(&hadc1, 100); adc_value = HAL_ADC_GetValue(&hadc1); voltage = (float)adc_value / 4096.0f * 3.3f; __HAL_TIM_SET_COMPARE(&htim2, TIM_CHANNEL_1, adc_value * 100 / 4096); } } void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; __HAL_RCC_PWR_CLK_ENABLE(); __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLM = 8; RCC_OscInitStruct.PLL.PLLN = 336; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2; RCC_OscInitStruct.PLL.PLLQ = 7; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK) { Error_Handler(); } } static void MX_ADC1_Init(void) { ADC_ChannelConfTypeDef sConfig = {0}; hadc1.Instance = ADC1; hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4; hadc1.Init.Resolution = ADC_RESOLUTION_12B; hadc1.Init.ScanConvMode = DISABLE; hadc1.Init.ContinuousConvMode = DISABLE; hadc1.Init.DiscontinuousConvMode = DISABLE; hadc1.Init.NbrOfDiscConversion = 0; hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE; hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START; hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT; hadc1.Init.NbrOfConversion = 1; hadc1.Init.DMAContinuousRequests = DISABLE; hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV; if (HAL_ADC_Init(&hadc1) != HAL_OK) { Error_Handler(); } sConfig.Channel = ADC_CHANNEL_1; sConfig.Rank = 1; sConfig.SamplingTime = ADC_SAMPLETIME_480CYCLES; if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) { Error_Handler(); } } static void MX_TIM2_Init(void) { TIM_MasterConfigTypeDef sMasterConfig = {0}; TIM_OC_InitTypeDef sConfigOC = {0}; htim2.Instance = TIM2; htim2.Init.Prescaler = 8399; htim2.Init.CounterMode = TIM_COUNTERMODE_UP; htim2.Init.Period = 999; htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; if (HAL_TIM_PWM_Init(&htim2) != HAL_OK) { Error_Handler(); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK) { Error_Handler(); } sConfigOC.OCMode = TIM_OCMODE_PWM1; sConfigOC.Pulse = 0; sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH; sConfigOC.OCFastMode = TIM_OCFAST_DISABLE; if (HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_1) != HAL_OK) { Error_Handler(); } } ``` 在上述代码中,我们启动了ADC采样,并在无限循环中不断进行采样。在每次采样完成后,我们计算得到采样电压,并根据采样电压来控制LED的亮度。具体地,我们使用PWM控制LED亮度,PWM占空比根据采样值动态调整。 需要注意的是,这里的代码仅供参考,实际应用中需要根据具体硬件和需求进行相应的修改和调试。

相关推荐

最新推荐

recommend-type

STM32F407 RTC 配置理解与总结

本文主要讲述作者对STM32F407的RTC配置的理解与总结,感兴趣的朋友可以看看。
recommend-type

正点原子STM32F407 FreeRTOS开发.pdf

正点原子STM32F407 FreeRTOS开发手册_V1.1版本,详细介绍FreeRTOS嵌入STM32F407。
recommend-type

用Proteus8.9自带STM32F401VE的Controller仿真STM32F407ZGT6,F429IGT6

一, 目前得到的 Proteus8.9版本软件能够支持的...但STM32F401VE的固件库基于Cortex-M4,笔者就想利用Proteus8.9版本软件现有的STM32F401VE的固件库,对F407,F429系列芯片通过Proteus VSM Studio进行仿真实验应用。
recommend-type

STM32_ADC多通道采样的例子

STM32 ADC多通道转换 描述:用ADC连续采集11路模拟信号,并由DMA传输到内存。ADC配置为扫描并且连续转换模式,ADC的时钟配置为12MHZ。在每次转换结束后,由DMA循环将转换的数据传输到内存中。ADC可以连续采集N次求...
recommend-type

CUBEMX-STM32F030学习笔记

学习STM32F030的笔记,详细的功能简介,简单原理,CUBE配置图片步骤,选项功能意义还有加入的功能代码。包括一些性能范围和实践经验值。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

HSV转为RGB的计算公式

HSV (Hue, Saturation, Value) 和 RGB (Red, Green, Blue) 是两种表示颜色的方式。下面是将 HSV 转换为 RGB 的计算公式: 1. 将 HSV 中的 S 和 V 值除以 100,得到范围在 0~1 之间的值。 2. 计算色相 H 在 RGB 中的值。如果 H 的范围在 0~60 或者 300~360 之间,则 R = V,G = (H/60)×V,B = 0。如果 H 的范围在 60~120 之间,则 R = ((120-H)/60)×V,G = V,B = 0。如果 H 的范围在 120~180 之间,则 R = 0,G = V,B =
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。