生成对抗网络pytorch
时间: 2023-09-11 08:05:07 浏览: 90
生成对抗网络(GAN)在PyTorch中的实现相对简单。以下是一个简单的示例GAN代码:
首先,我们需要导入所需的库:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd.variable import Variable
```
接下来,我们定义生成器和判别器的网络结构:
```python
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
self.fc1 = nn.Linear(100, 128)
self.fc2 = nn.Linear(128, 784)
def forward(self, x):
x = nn.LeakyReLU(0.2)(self.fc1(x))
x = nn.Tanh()(self.fc2(x))
return x
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.fc1 = nn.Linear(784, 128)
self.fc2 = nn.Linear(128, 1)
def forward(self, x):
x = nn.LeakyReLU(0.2)(self.fc1(x))
x = nn.Sigmoid()(self.fc2(x))
return x
```
然后,我们定义数据加载器和优化器:
```python
batch_size = 100
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
train_data = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
train_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size, shuffle=True)
generator = Generator()
discriminator = Discriminator()
criterion = nn.BCELoss()
gen_optimizer = optim.Adam(generator.parameters(), lr=0.0002)
dis_optimizer = optim.Adam(discriminator.parameters(), lr=0.0002)
```
接下来,我们定义训练循环:
```python
num_epochs = 200
for epoch in range(num_epochs):
for i, (images, _) in enumerate(train_loader):
batch_size = images.size(0)
real_images = Variable(images.view(batch_size, -1))
# Train discriminator
dis_optimizer.zero_grad()
dis_output_real = discriminator(real_images)
dis_loss_real = criterion(dis_output_real, Variable(torch.ones(batch_size, 1)))
dis_loss_real.backward()
z = Variable(torch.randn(batch_size, 100))
fake_images = generator(z)
dis_output_fake = discriminator(fake_images.detach())
dis_loss_fake = criterion(dis_output_fake, Variable(torch.zeros(batch_size, 1)))
dis_loss_fake.backward()
dis_loss = dis_loss_real + dis_loss_fake
dis_optimizer.step()
# Train generator
gen_optimizer.zero_grad()
z = Variable(torch.randn(batch_size, 100))
fake_images = generator(z)
dis_output_fake = discriminator(fake_images)
gen_loss = criterion(dis_output_fake, Variable(torch.ones(batch_size, 1)))
gen_loss.backward()
gen_optimizer.step()
if (i+1) % 100 == 0:
print('Epoch [%d/%d], Step [%d/%d], Discriminator Loss: %.4f, Generator Loss: %.4f' % (epoch+1, num_epochs, i+1, len(train_data)//batch_size, dis_loss.data[0], gen_loss.data[0]))
torch.save(generator.state_dict(), 'generator.pkl')
torch.save(discriminator.state_dict(), 'discriminator.pkl')
```
在这个训练循环中,我们首先训练鉴别器,然后训练生成器。最后,我们保存生成器和鉴别器的权重。
这是一个简单的GAN实现示例。但是,GAN的调试和微调可能需要更多的工作。
阅读全文