卷积神经网络中激活函数的作用
时间: 2023-10-22 12:35:07 浏览: 94
卷积神经网络中激活函数的一种改进.pdf
卷积神经网络中激活函数的作用有以下几点:
1. 引入非线性:卷积神经网络中的卷积操作是线性的,如果没有激活函数的话,整个网络仍然是线性的,无法处理复杂的非线性问题。因此,激活函数的引入使得网络具有了非线性表达能力,能够处理更加复杂的问题。
2. 压缩输出空间:激活函数可以将神经元的输出范围限定在一定的区间内,如sigmoid函数将输出限定在0到1之间,tanh函数将输出限定在-1到1之间。这样可以使得网络的输出范围更加合理,避免输出值过大或过小。
3. 改善梯度消失问题:在深层网络中,如果使用线性激活函数,梯度会不断缩小,从而导致梯度消失问题。而非线性激活函数可以避免这个问题的出现,使得梯度能够传递到深层网络中。
4. 增加模型的表达能力:常见的激活函数如ReLU、LeakyReLU等都具有一定的稀疏性质,能够使得神经元只对一部分输入产生响应,从而增加模型的表达能力,提高模型的泛化性能。
阅读全文