神经网络语音识别算法代码
时间: 2023-07-26 15:04:01 浏览: 113
以下是一个简单的基于神经网络的语音识别算法的代码示例,使用 Python 和 TensorFlow:
```python
import tensorflow as tf
import numpy as np
# 定义神经网络结构
n_inputs = 20 # 输入的特征数
n_hidden1 = 100 # 第一层隐含层神经元数
n_hidden2 = 100 # 第二层隐含层神经元数
n_outputs = 10 # 输出的类别数
# 定义占位符
X = tf.placeholder(tf.float32, shape=(None, n_inputs))
y = tf.placeholder(tf.int64, shape=(None))
# 定义神经网络层
with tf.name_scope("dnn"):
hidden1 = tf.layers.dense(X, n_hidden1, name="hidden1", activation=tf.nn.relu)
hidden2 = tf.layers.dense(hidden1, n_hidden2, name="hidden2", activation=tf.nn.relu)
logits = tf.layers.dense(hidden2, n_outputs, name="outputs")
# 定义损失函数和优化器
with tf.name_scope("loss"):
xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y, logits=logits)
loss = tf.reduce_mean(xentropy, name="loss")
with tf.name_scope("train"):
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01)
training_op = optimizer.minimize(loss)
# 定义评估指标
with tf.name_scope("eval"):
correct = tf.nn.in_top_k(logits, y, 1)
accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))
# 加载数据
from tensorflow.contrib.learn.python.learn.datasets import base
from tensorflow.python.framework import random_seed
def load_mnist():
np.random.seed(42)
tf.set_random_seed(42)
mnist = base.load_csv_with_header(filename="mnist/train.csv", target_dtype=np.int, features_dtype=np.float32)
X_train = mnist.data[:50000]
y_train = mnist.target[:50000]
X_valid = mnist.data[50000:60000]
y_valid = mnist.target[50000:60000]
X_test = mnist.data[60000:]
y_test = mnist.target[60000:]
return X_train, y_train, X_valid, y_valid, X_test, y_test
X_train, y_train, X_valid, y_valid, X_test, y_test = load_mnist()
# 模型训练
n_epochs = 100
batch_size = 50
with tf.Session() as sess:
tf.global_variables_initializer().run()
for epoch in range(n_epochs):
for iteration in range(len(X_train) // batch_size):
X_batch = X_train[iteration*batch_size:(iteration+1)*batch_size]
y_batch = y_train[iteration*batch_size:(iteration+1)*batch_size]
sess.run(training_op, feed_dict={X: X_batch, y: y_batch})
acc_train = accuracy.eval(feed_dict={X: X_train, y: y_train})
acc_valid = accuracy.eval(feed_dict={X: X_valid, y: y_valid})
print(epoch, "Train accuracy:", acc_train, "Validation accuracy:", acc_valid)
# 测试模型
acc_test = accuracy.eval(feed_dict={X: X_test, y: y_test})
print("Test accuracy:", acc_test)
```
这个示例代码使用了一个两层的全连接神经网络(即多层感知器)来进行 MNIST 手写数字识别。您可以根据自己的需求和数据集来进行修改和扩展。
阅读全文