matlab自适应阈值法图像二值化的原理是什么
时间: 2024-01-30 22:01:55 浏览: 259
matlab实现图像图像二值化
4星 · 用户满意度95%
Matlab自适应阈值法图像二值化的原理是将灰度图像转换为二值图像,其中阈值是根据图像局部灰度特征自适应计算的。通常情况下,图像中不同区域的灰度差异较大,因此采用全局阈值法容易导致目标和背景混淆,影响二值化效果。自适应阈值法通过根据局部灰度特征进行阈值计算,可以有效地解决这个问题。
自适应阈值法主要分为局部均值法和局部中值法两种。其中,局部均值法根据每个像素周围的邻域像素的平均灰度值计算阈值,而局部中值法则根据每个像素周围的邻域像素灰度值的中值计算阈值。
在Matlab中,可以使用adaptiveThreshold函数进行自适应阈值法图像二值化操作。例如,以下代码将灰度图像I进行自适应阈值法二值化处理,并将结果保存在BW中:
```
BW = adaptiveThreshold(I, blockSize, C);
```
其中,blockSize表示邻域大小,C表示阈值修正常数。adaptiveThreshold函数将灰度图像I根据邻域大小和阈值修正常数进行自适应阈值法二值化处理,并将结果保存在BW中。
阅读全文