重新写一份,已知线性方程组有三个未知数
时间: 2024-02-26 13:55:12 浏览: 146
好的,以下是重新编写的代码,用于解决一个三元线性方程组:
```python
import numpy as np
def sor(A, b, omega, x0, tol=1e-10, max_iter=1000):
"""
超松弛迭代法(SOR)求解三元线性方程组 Ax=b
参数:
A:系数矩阵,大小为(3, 3)
b:常数向量,大小为(3,)
omega:松弛因子,一般取值在(0, 2)
x0:初始解向量,大小为(3,)
tol:迭代收敛的精度,默认为1e-10
max_iter:最大迭代次数,默认为1000
返回:
解向量x,大小为(3,)
"""
n = len(b) # 方程组的未知数个数,这里为3
x = x0.copy() # 将初始解向量复制一份,避免修改原始数据
for k in range(max_iter):
for i in range(n):
# 计算第i行的系数和解向量x中除第i个元素外的其他元素的乘积之和
s = np.dot(A[i, :i], x[:i]) + np.dot(A[i, i+1:], x0[i+1:])
# 使用SOR公式更新第i个元素的值
x[i] = x[i] + omega * ((b[i] - s) / A[i, i] - x[i])
# 判断迭代是否收敛
if np.linalg.norm(x - x0) < tol:
return x
x0 = x.copy() # 更新初始解向量
return x
```
在这份代码中,我们将函数的参数修改为适用于三元线性方程组的形式。系数矩阵`A`的大小为`(3, 3)`,常数向量`b`的大小为`(3,)`,初始解向量`x0`的大小为`(3,)`。在函数内部,我们首先将方程组的未知数个数`n`赋值为3,然后将初始解向量`x0`复制一份。之后的计算逻辑与之前的代码相同。
希望这份代码能够帮到您。
阅读全文