from sklearn.datasets import load_breast_cancer需要将原始数据保存在本地,并查看 计算精确率、召回率、f1指数 实现KNN分类,并用精确率、召回率、f1指数对比两种模型的性能使用python完成
时间: 2024-06-17 15:07:45 浏览: 185
`load_breast_cancer`是scikit-learn中的一个数据集,包含了乳腺癌诊断的数据。你可以使用以下代码将原始数据保存在本地,并查看:
```
from sklearn.datasets import load_breast_cancer
import pandas as pd
data = load_breast_cancer()
df = pd.DataFrame(data.data, columns=data.feature_names)
df.to_csv('breast_cancer.csv', index=False)
print(df.head())
```
接下来,我们可以使用KNN模型对乳腺癌诊断进行分类,计算精确率、召回率、f1指数。以下是示例代码:
```
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import precision_score, recall_score, f1_score
# 加载数据
data = pd.read_csv('breast_cancer.csv')
X = data.values
y = data.target
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
# 训练KNN模型
knn = KNeighborsClassifier(n_neighbors=5)
knn.fit(X_train, y_train)
# 预测测试集结果
y_pred = knn.predict(X_test)
# 计算精确率、召回率、f1指数
precision = precision_score(y_test, y_pred)
recall = recall_score(y_test, y_pred)
f1 = f1_score(y_test, y_pred)
print("精确率:", precision)
print("召回率:", recall)
print("f1指数:", f1)
```
你也可以尝试使用其他分类模型进行比较,并计算不同模型的精确率、召回率、f1指数。
阅读全文