仿真二维doa估计压缩感知方法的matlab
时间: 2023-07-27 22:06:15 浏览: 112
以下是一个基于MATLAB实现的二维DOA估计压缩感知方法的简单示例:
首先,生成具有两个信号源的二维信号,其中一个信号源的方向为30度,另一个为60度:
```
theta = [30; 60]*pi/180; % 信号源方向
P = length(theta); % 信号源数量
M = 10; % 阵元数量
N = 256; % 采样点数
noise_var = 0.1; % 噪声方差
% 生成二维信号
signal = zeros(M,N);
for ii = 1:P
a = [exp(-1j*pi*cos(theta(ii))*(0:M-1)');exp(-1j*pi*sin(theta(ii))*(0:M-1)')];
signal = signal + a*exp(1j*2*pi*rand(1,N))*sqrt(1/2)+sqrt(noise_var)*randn(M,N);
end
```
然后,使用压缩感知技术对信号进行采样和重构:
```
% 生成感知矩阵
Phi = randn(M,N);
Phi = Phi*diag(1./sqrt(sum(abs(Phi).^2,1)));
% 采样
y = Phi*signal(:);
% 重构
lambda = 0.2; % L1正则化参数
cvx_begin
variable x(N*M,1)
minimize( norm(x,1) )
subject to
Phi*reshape(x,M*N,1) == y;
cvx_end
x = reshape(x,M,N);
```
最后,使用二维DOA估计方法对重构后的信号进行方向估计:
```
% 二维DOA估计
Rx = x*x'/N;
[V,D] = eig(Rx);
[~,ind] = sort(diag(D),'descend');
V = V(:,ind);
theta_est = atan2(V(2:M,1),V(1,1))/pi*180;
```
完整的MATLAB代码如下:
```
% 生成信号数据
theta = [30; 60]*pi/180;
P = length(theta);
M = 10;
N = 256;
noise_var = 0.1;
signal = zeros(M,N);
for ii = 1:P
a = [exp(-1j*pi*cos(theta(ii))*(0:M-1)');exp(-1j*pi*sin(theta(ii))*(0:M-1)')];
signal = signal + a*exp(1j*2*pi*rand(1,N))*sqrt(1/2)+sqrt(noise_var)*randn(M,N);
end
% 压缩感知采样和重构
Phi = randn(M,N);
Phi = Phi*diag(1./sqrt(sum(abs(Phi).^2,1)));
y = Phi*signal(:);
lambda = 0.2;
cvx_begin
variable x(N*M,1)
minimize( norm(x,1) )
subject to
Phi*reshape(x,M*N,1) == y;
cvx_end
x = reshape(x,M,N);
% 二维DOA估计
Rx = x*x'/N;
[V,D] = eig(Rx);
[~,ind] = sort(diag(D),'descend');
V = V(:,ind);
theta_est = atan2(V(2:M,1),V(1,1))/pi*180;
```
注意,上述示例仅供参考,实际应用中需要根据具体情况进行修改和优化。
阅读全文