编码器网络由一个卷积层(“Conv”)和四个卷积块(“ECB10”、“ECB20”、“ECB30”和“ECB40”)组成。每个块包含两个卷积层和一个最大池算子,可以确保编码器网络提取不同尺度的深度特征。解码器网络有六个卷积块(“DCB11”、“DCB12”、“DCB13”;“DCB21”、“DCB22”;“DCB31”)和一个卷积层(“Conv”)。python代码
时间: 2023-07-15 14:11:55 浏览: 106
Datawhale 组队学习打卡营 任务13:卷积神经网络基础
以下是一个简单的 Python 代码示例,实现了上述所述的编码器和解码器网络结构:
``` python
import torch.nn as nn
class Encoder(nn.Module):
def __init__(self, in_channels, out_channels):
super(Encoder, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1)
self.ecb10 = nn.Sequential(
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2)
)
self.ecb20 = nn.Sequential(
nn.Conv2d(out_channels, out_channels*2, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels*2, out_channels*2, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2)
)
self.ecb30 = nn.Sequential(
nn.Conv2d(out_channels*2, out_channels*4, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels*4, out_channels*4, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2)
)
self.ecb40 = nn.Sequential(
nn.Conv2d(out_channels*4, out_channels*8, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels*8, out_channels*8, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2)
)
def forward(self, x):
x = self.conv(x)
x = self.ecb10(x)
x = self.ecb20(x)
x = self.ecb30(x)
x = self.ecb40(x)
return x
class Decoder(nn.Module):
def __init__(self, in_channels, out_channels):
super(Decoder, self).__init__()
self.dcb11 = nn.Sequential(
nn.Conv2d(in_channels, out_channels*4, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels*4, out_channels*4, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
)
self.dcb12 = nn.Sequential(
nn.Conv2d(out_channels*4, out_channels*2, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels*2, out_channels*2, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
)
self.dcb13 = nn.Sequential(
nn.Conv2d(out_channels*2, out_channels, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
)
self.dcb21 = nn.Sequential(
nn.Conv2d(out_channels, out_channels*2, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels*2, out_channels*2, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
)
self.dcb22 = nn.Sequential(
nn.Conv2d(out_channels*2, out_channels, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
)
self.dcb31 = nn.Sequential(
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
)
self.conv = nn.Conv2d(out_channels, in_channels, kernel_size=3, padding=1)
def forward(self, x):
x = self.dcb11(x)
x = self.dcb12(x)
x = self.dcb13(x)
x = self.dcb21(x)
x = self.dcb22(x)
x = self.dcb31(x)
x = self.conv(x)
return x
```
阅读全文