转化为python代码
时间: 2023-07-23 07:36:22 浏览: 95
好的,下面是基于像素注意力机制的自适应融合模块的Python实现代码:
```python
import torch.nn as nn
import torch.nn.functional as F
import torch
class PixelAttentionModule(nn.Module):
def __init__(self, in_channels, num_inputs, out_channels):
super(PixelAttentionModule, self).__init__()
self.num_inputs = num_inputs
self.in_channels = in_channels
self.out_channels = out_channels
self.conv_layers = nn.ModuleList()
for i in range(self.num_inputs):
self.conv_layers.append(nn.Conv2d(self.in_channels, self.out_channels, kernel_size=1, bias=False))
self.alpha = nn.Parameter(torch.zeros(self.num_inputs), requires_grad=True)
self.fc = nn.Linear(self.out_channels, 1, bias=False)
def forward(self, inputs):
out = []
for i in range(self.num_inputs):
x = self.conv_layers[i](inputs[i])
x = F.adaptive_avg_pool2d(x, (1, 1))
out.append(x)
out = torch.cat(out, dim=1)
alpha = F.softmax(self.alpha, dim=0)
out = torch.sum(alpha.view(-1, 1, 1, 1) * out, dim=1)
weights = self.fc(out)
weights = F.relu(weights)
weights = torch.sigmoid(weights)
out = inputs[0] * weights
for i in range(1, self.num_inputs):
out += inputs[i] * weights
return out
```
这段代码中,我们定义了一个PixelAttentionModule类,它继承自nn.Module类。在类的初始化函数中,我们定义了输入的通道数(in_channels)、输入特征图的数量(num_inputs)和输出的通道数(out_channels)。然后,我们使用nn.ModuleList()定义了多个卷积层,每个卷积层的输出通道数都是out_channels。接着,我们定义了权重向量alpha,它的长度等于num_inputs。最后,我们定义了一个全连接层fc,将输出的特征图压缩成一个标量。在forward()函数中,我们首先对每个输入特征图进行卷积和全局平均池化,得到对应的特征向量。然后,我们将这些特征向量拼接在一起,并使用softmax函数计算每个输入特征图对应的权重。接着,我们将每个像素的权重与对应像素的特征向量相乘,得到自适应融合模块的输出特征图。最后,我们将输出特征图与输入特征图相乘,得到最终的输出。
阅读全文