用pytorch写一段WGAN代码,用于解决结构化数据的样本不均衡问题
时间: 2023-04-02 08:01:45 浏览: 210
基于pytorch实现的MNIST+CNN模型实现对手写数字的识别源码+数据集(高分项目)
好的,我可以回答这个问题。以下是一个简单的用 PyTorch 实现 WGAN 的代码,用于解决结构化数据的样本不均衡问题:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms
# 定义数据集
class MyDataset(Dataset):
def __init__(self, data):
self.data = data
def __len__(self):
return len(self.data)
def __getitem__(self, index):
return self.data[index]
# 定义生成器和判别器
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
self.fc1 = nn.Linear(100, 128)
self.fc2 = nn.Linear(128, 256)
self.fc3 = nn.Linear(256, 784)
def forward(self, x):
x = nn.functional.relu(self.fc1(x))
x = nn.functional.relu(self.fc2(x))
x = nn.functional.tanh(self.fc3(x))
return x
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.fc1 = nn.Linear(784, 256)
self.fc2 = nn.Linear(256, 128)
self.fc3 = nn.Linear(128, 1)
def forward(self, x):
x = nn.functional.relu(self.fc1(x))
x = nn.functional.relu(self.fc2(x))
x = self.fc3(x)
return x
# 定义 WGAN 模型
class WGAN(nn.Module):
def __init__(self):
super(WGAN, self).__init__()
self.generator = Generator()
self.discriminator = Discriminator()
def forward(self, x):
return self.generator(x)
def train(self, data, epochs=100, batch_size=128, lr=.0001, clip_value=.01):
optimizer_g = optim.RMSprop(self.generator.parameters(), lr=lr)
optimizer_d = optim.RMSprop(self.discriminator.parameters(), lr=lr)
for epoch in range(epochs):
for i, real_data in enumerate(DataLoader(data, batch_size=batch_size, shuffle=True)):
# 训练判别器
for _ in range(5):
self.discriminator.zero_grad()
real_data = real_data.view(-1, 784)
real_data = real_data.to(torch.float32)
real_data.requires_grad = True
real_loss = self.discriminator(real_data)
real_loss.backward()
noise = torch.randn(batch_size, 100)
fake_data = self.generator(noise).detach()
fake_loss = self.discriminator(fake_data)
fake_loss.backward()
optimizer_d.step()
for p in self.discriminator.parameters():
p.data.clamp_(-clip_value, clip_value)
# 训练生成器
self.generator.zero_grad()
noise = torch.randn(batch_size, 100)
fake_data = self.generator(noise)
fake_loss = self.discriminator(fake_data)
fake_loss.backward()
optimizer_g.step()
print(f"Epoch {epoch+1}/{epochs}, Generator Loss: {fake_loss.item()}, Discriminator Loss: {real_loss.item()}")
```
这段代码实现了一个简单的 WGAN 模型,用于生成 MNIST 手写数字数据集的样本。你可以根据自己的需求修改代码,例如改变数据集、调整网络结构等。
阅读全文