解释以下代码if lahead > 1: data_input = np.repeat(data_input.values, repeats=lahead, axis=1) data_input = pd.DataFrame(data_input) for i, c in enumerate(data_input.columns): data_input[c] = data_input[c].shift(i) # 丢弃 nan expected_output = expected_output[to_drop:] data_input = data_input[to_drop:]
时间: 2024-01-16 08:02:16 浏览: 72
这段代码中首先判断 `lahead` 是否大于1。如果是,则说明需要进行多步预测,此时需要对数据进行处理以适应模型的输入格式。
接下来,代码首先使用 `numpy` 库的 `repeat()` 方法对 `data_input` 中的每个数据点进行重复,重复次数为 `lahead`,并将重复后的数据按列合并成一个新的数据帧。然后,代码使用 `pandas` 库的 `shift()` 方法对每一列数据进行平移操作,以适应模型的输入格式。具体而言,对于第 `i` 列数据,将其平移 `i` 个时间步,平移后的空位用NaN进行填充。
最后,代码通过 `expected_output = expected_output[to_drop:]` 和 `data_input = data_input[to_drop:]` 语句将数据序列中前 `to_drop` 个数据点丢弃,以保证数据序列的长度和预测目标一致。
综上所述,这段代码的作用是对数据进行处理以适应多步预测模型的输入格式,并且保证数据序列的长度与预测目标一致。
相关问题
import math import torch from torch import nn from d2l import torch as d2l def transpose_qkv(X,num_heads): X = X.reshape(X.shape[0], X.shape[1], num_heads, -1) X = X.permute(0, 2, 1, 3) return X.reshape(-1, X.shape[2], X.shape[3]) def transpose_output(X,num_heads): X = X.reshape(-1, num_heads, X.shape[1], X.shape[2]) X = X.permute(0, 2, 1, 3) return X.reshape(X.shape[0], X.shape[1], -1) class MultiHeadAttention(nn.Module): def __init__(self,key_size,query_size,value_size,num_hiddens, num_heads,dropout,bias=False,**kwargs): super(MultiHeadAttention,self).__init__(**kwargs) self.num_heads = num_heads self.attention = d2l.DotProductAttention(dropout) self.W_q = nn.Linear(query_size,num_hiddens,bias=bias) self.W_k = nn.Linear(key_size,num_hiddens,bias=bias) self.W_v = nn.Linear(value_size,num_hiddens,bias=bias) self.W_o = nn.Linear(num_hiddens,num_hiddens,bias=bias) def forward(self,queries,keys,values,valid_lens): queries = transpose_qkv(self.W_q(queries), self.num_heads) keys = transpose_qkv(self.W_k(keys), self.num_heads) values = transpose_qkv(self.W_v(values), self.num_heads) if valid_lens is not None: valid_lens = torch.repeat_interleave(valid_lens, repeats=self.num_heads, dim=0) output = self.attention(queries,keys,values,valid_lens) output_concat = transpose_output(output,self.num_heads) return self.W_o(output_concat)
这段代码实现了多头注意力机制(Multi-Head Attention)的模块。多头注意力机制是用于处理序列数据的深度学习模型中常的组件,它可以并行地对输入序列进行不同位置的关注。
在这段代码中,`MultiHeadAttention` 类继承自 `nn.Module`,并实现了 `forward` 方法来定义前向传播的计算过程。在初始化方法 `__init__` 中,定义了多头注意力机制所需的参数,包括输入和输出的维度、头数、隐藏层大小等。同时,还定义了线性变换层 `W_q`、`W_k`、`W_v` 和 `W_o`,用于将输入序列映射到查询、键、值和输出空间。
在 `forward` 方法中,首先对查询、键和值进行线性变换,并通过 `transpose_qkv` 函数将它们转置为多头注意力机制所需的形状。然后,调用 `DotProductAttention` 类来计算注意力权重,并将注意力加权的值进行转置和重塑操作,最后通过线性变换层 `W_o` 得到最终的输出。
需要注意的是,在计算过程中,如果提供了有效长度 `valid_lens`,则将其在维度0上进行复制以适应多头注意力机制的并行计算。
这段代码使用了 PyTorch 框架和 d2l 库来实现多头注意力机制。具体实现细节可以参考 d2l 库中的相关章节或文档。
model = 'Ridge' opt_models[model] = Ridge() alph_range = np.arange(0.25,6,0.25) param_grid = {'alpha': alph_range} opt_models[model],cv_score,grid_results = train_model(opt_models[model], param_grid=param_grid, splits=splits, repeats=repeats) cv_score.name = model score_models = score_models.append(cv_score) plt.figure() plt.errorbar(alph_range, abs(grid_results['mean_test_score']), abs(grid_results['std_test_score'])/np.sqrt(splits*repeats)) plt.xlabel('alpha') plt.ylabel('score')
这段代码看起来是在进行模型的训练和评估,使用的是 Ridge 回归模型。首先定义了一个字典 opt_models,将 Ridge 对象存储到该字典中。然后使用 numpy 库中的 arange 函数生成一组 alpha 参数,用于对 Ridge 模型进行调参。接着,使用 train_model 函数对 Ridge 模型进行训练和评估,传入的参数包括 Ridge 模型、调参范围、交叉验证的划分方式等。train_model 函数返回了训练好的 Ridge 模型、交叉验证的得分以及所有参数组合的评估结果。将交叉验证得分存储在名为 cv_score 的对象中,并将其添加到名为 score_models 的 DataFrame 中。最后,使用 matplotlib 库绘制调参过程中得分和 alpha 参数的关系图。
阅读全文