IS_CLUSTER INSTALL=false
时间: 2023-10-23 07:12:10 浏览: 167
如果您在安装 SQL Server 时遇到了 "IS_CLUSTER INSTALL=false" 错误,这意味着您正在尝试安装单个节点 SQL Server 实例,而不是 SQL Server 故障转移群集。这个错误消息出现的原因是您在安装程序中选择了 "添加节点到现有的 SQL Server 故障转移群集" 选项,而您的系统上没有安装 SQL Server 故障转移群集。
要解决这个问题,您可以选择 "新建 SQL Server 故障转移群集" 选项,然后继续进行安装过程。如果您不需要安装 SQL Server 故障转移群集,您可以选择 "独立安装 SQL Server" 选项,这将安装单个节点 SQL Server 实例。
请注意,在安装 SQL Server 故障转移群集之前,您需要确保满足群集安装的所有要求和条件,例如域环境、群集服务、硬件和网络配置等。否则,群集安装可能会失败并出现其他错误消息。
相关问题
图卷积网络进行骨骼识别代码_PyG训练图卷积网络GCN的代码参考
下面是使用PyG训练图卷积网络GCN进行骨骼识别的代码参考:
首先,需要安装PyG和其他必要的库:
```python
!pip install torch torchvision torchaudio
!pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-1.7.0+${CUDA}.html
!pip install torch-sparse -f https://pytorch-geometric.com/whl/torch-1.7.0+${CUDA}.html
!pip install torch-cluster -f https://pytorch-geometric.com/whl/torch-1.7.0+${CUDA}.html
!pip install torch-spline-conv -f https://pytorch-geometric.com/whl/torch-1.7.0+${CUDA}.html
!pip install torch-geometric
```
接下来,加载数据集:
```python
import torch
from torch_geometric.datasets import HumanSkeletonDataset
train_dataset = HumanSkeletonDataset(root='./data', split='train')
test_dataset = HumanSkeletonDataset(root='./data', split='test')
```
然后,定义模型:
```python
from torch_geometric.nn import GCNConv
import torch.nn.functional as F
class GCN(torch.nn.Module):
def __init__(self, num_features, hidden_channels, num_classes):
super(GCN, self).__init__()
self.conv1 = GCNConv(num_features, hidden_channels)
self.conv2 = GCNConv(hidden_channels, num_classes)
def forward(self, x, edge_index):
x = self.conv1(x, edge_index)
x = F.relu(x)
x = F.dropout(x, training=self.training)
x = self.conv2(x, edge_index)
return x
```
接下来,定义训练过程:
```python
import torch.optim as optim
from torch_geometric.data import DataLoader
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def train(model, train_loader, optimizer):
model.train()
for data in train_loader:
data = data.to(device)
optimizer.zero_grad()
out = model(data.x, data.edge_index)
loss = F.cross_entropy(out, data.y)
loss.backward()
optimizer.step()
def test(model, loader):
model.eval()
correct = 0
for data in loader:
data = data.to(device)
with torch.no_grad():
pred = model(data.x, data.edge_index).argmax(dim=1)
correct += int((pred == data.y).sum())
return correct / len(loader.dataset)
```
最后,训练模型并测试:
```python
model = GCN(num_features=3, hidden_channels=16, num_classes=15).to(device)
optimizer = optim.Adam(model.parameters(), lr=0.01)
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)
for epoch in range(1, 201):
train(model, train_loader, optimizer)
train_acc = test(model, train_loader)
test_acc = test(model, test_loader)
print(f'Epoch: {epoch:03d}, Train Acc: {train_acc:.4f}, Test Acc: {test_acc:.4f}')
```
这是一个简单的示例,你需要根据自己的数据集和需求进行修改和调整。
阅读全文