用python代码实现基于手写数字识别数据集MNIST的测试集(10000张图片)实验用Pytorch框架实现深度信念网络的搭建。进行十折交叉验证并汇报最终识别正确率。网络的隐藏层个数、每个隐藏层的结点数等设置根据实验结果进一步调整,最后选择结果最优的设置在实验报告中汇报。
时间: 2024-02-26 08:57:32 浏览: 109
好的,以下是用Pytorch实现基于手写数字识别数据集MNIST的测试集(10000张图片)实验的代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST
from torchvision.transforms import ToTensor
from tqdm import tqdm
# 定义深度信念网络模型
class DBN(nn.Module):
def __init__(self, num_visible, hidden_sizes):
super(DBN, self).__init__()
self.num_layers = len(hidden_sizes)
self.rbm_layers = nn.ModuleList()
self.hidden_layers = nn.ModuleList()
self.visible_layer = nn.Linear(num_visible, hidden_sizes[0])
for i in range(self.num_layers):
input_size = hidden_sizes[i-1] if i > 0 else num_visible
rbm_layer = nn.Sequential(
nn.Linear(input_size, hidden_sizes[i]),
nn.Sigmoid()
)
self.rbm_layers.append(rbm_layer)
hidden_layer = nn.Sequential(
nn.Linear(input_size, hidden_sizes[i]),
nn.Sigmoid()
)
self.hidden_layers.append(hidden_layer)
def forward(self, x):
out = self.visible_layer(x)
for i in range(self.num_layers):
out = self.hidden_layers[i](out)
return out
# 定义训练函数
def train(model, train_loader, optimizer, criterion):
model.train()
train_loss = 0.0
for data, target in tqdm(train_loader):
data = data.view(data.size(0), -1)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, data)
loss.backward()
optimizer.step()
train_loss += loss.item() * len(data)
train_loss /= len(train_loader.dataset)
return train_loss
# 定义测试函数
def test(model, test_loader, criterion):
model.eval()
test_loss = 0.0
correct = 0
with torch.no_grad():
for data, target in tqdm(test_loader):
data = data.view(data.size(0), -1)
output = model(data)
test_loss += criterion(output, data).item() * len(data)
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(data.argmax(dim=1, keepdim=True)).sum().item()
test_loss /= len(test_loader.dataset)
accuracy = correct / len(test_loader.dataset)
return test_loss, accuracy
# 设置超参数
num_visible = 784
hidden_sizes = [500, 500, 2000]
batch_size = 128
lr = 0.01
epochs = 10
nfolds = 10
# 加载数据集
train_dataset = MNIST(root='./data', train=True, transform=ToTensor(), download=True)
test_dataset = MNIST(root='./data', train=False, transform=ToTensor(), download=True)
# 划分数据集并进行交叉验证
n_train = len(train_dataset)
n_test = len(test_dataset)
fold_size = n_train // nfolds
folds = []
for i in range(nfolds):
train_indices = list(range(i*fold_size, (i+1)*fold_size))
test_indices = list(set(range(n_train)) - set(train_indices))
train_sampler = torch.utils.data.sampler.SubsetRandomSampler(train_indices)
test_sampler = torch.utils.data.sampler.SubsetRandomSampler(test_indices)
train_loader = DataLoader(train_dataset, batch_size=batch_size, sampler=train_sampler)
test_loader = DataLoader(test_dataset, batch_size=batch_size, sampler=test_sampler)
folds.append((train_loader, test_loader))
# 进行交叉验证训练和测试
for i in range(nfolds):
print(f"Fold {i+1}")
train_loader, test_loader = folds[i]
model = DBN(num_visible, hidden_sizes)
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=lr)
for epoch in range(1, epochs+1):
train_loss = train(model, train_loader, optimizer, criterion)
test_loss, accuracy = test(model, test_loader, criterion)
print(f"Epoch {epoch}: Train Loss={train_loss:.5f}, Test Loss={test_loss:.5f}, Accuracy={accuracy:.5f}")
```
这里我们定义了一个`DBN`类作为深度信念网络模型,并定义了训练函数`train`和测试函数`test`。接着我们设置了超参数,加载了MNIST数据集,并进行十折交叉验证。在每一折交叉验证中,我们都实例化一个新的`DBN`模型,并使用MSE损失函数和Adam优化器进行训练。在每个epoch结束时,我们计算训练集和测试集的损失和准确率,并输出结果。
最终,我们可以将十折交叉验证的结果进行平均,得到最终的识别正确率。同时,根据实验结果进一步调整网络的隐藏层个数、每个隐藏层的结点数等设置,选择结果最优的设置在实验报告中汇报。
阅读全文