使用bp神经网络完成以下对鸢尾花进行进行五折交叉验证,分别求出每类花的准确率和总的准确率使用python语言
时间: 2024-10-12 07:08:31 浏览: 46
在Python中,我们可以使用sklearn库中的`NeuralNetworkClassifier`来构建BP(Backpropagation)神经网络,并结合`train_test_split`函数进行五折交叉验证。这里我们假设已经导入了所需的库如`numpy`, `pandas`, 和`sklearn`。
首先,你需要安装scikit-neuralnetwork模块,可以使用pip进行安装:
```bash
pip install scikit-neuralnetwork
```
然后,你可以按照以下步骤操作:
1. 导入库并加载数据:
```python
import numpy as np
import pandas as pd
from sklearn.datasets import load_iris
from sklearn.model_selection import KFold
from sknn.mlp import Classifier, Layer
# 加载鸢尾花数据集
iris = load_iris()
X = iris.data
y = iris.target
```
2. 将数据分为特征和目标变量:
```python
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```
3. 创建一个BP神经网络模型:
```python
# 定义一个三层的BP神经网络
input_layer = Layer("Input", units=X_train.shape[1])
hidden_layer = Layer("Sigmoid", units=16) # 可调整隐藏层单元数
output_layer = Layer("Softmax") # 输出层通常用于多分类问题
nn = Classifier(layers=[input_layer, hidden_layer, output_layer], learning_rate=0.1)
```
4. 使用Kfold进行五折交叉验证:
```python
kf = KFold(n_splits=5, shuffle=True, random_state=42)
accuracies_per_class = []
total_accuracies = []
for train_index, val_index in kf.split(X_train):
X_train_fold, X_val_fold = X_train[train_index], X_train[val_index]
y_train_fold, y_val_fold = y_train[train_index], y_train[val_index]
nn.fit(X_train_fold, y_train_fold)
predictions = nn.predict(X_val_fold)
class_accuracies = [np.mean(predictions[y_val_fold == i] == y_val_fold[y_val_fold == i]) for i in range(3)]
total_accuracy = np.mean(predictions == y_val_fold)
accuracies_per_class.append(class_accuracies)
total_accuracies.append(total_accuracy)
# 平均准确率
mean_class_accuracies = np.mean(accuracies_per_class, axis=0)
mean_total_accuracy = np.mean(total_accuracies)
print(f"每类花的平均准确率为: {mean_class_accuracies}")
print(f"总平均准确率为: {mean_total_accuracy}")
```
这将计算鸢尾花数据集中每一类花的平均准确率和整体的平均准确率。
阅读全文